72 research outputs found

    Staphylococcus aureus ATP Synthase Promotes Biofilm Persistence by Influencing Innate Immunity

    Get PDF
    ABSTRACT Staphylococcus aureus is a major cause of prosthetic joint infection (PJI), which is characterized by biofilm formation. S. aureus biofilm skews the host immune response toward an anti-inflammatory profile by the increased recruitment of myeloid-derived suppressor cells (MDSCs) that attenuate macrophage proinflammatory activity, leading to chronic infection. A screen of the Nebraska Transposon Mutant Library identified several hits in the ATP synthase operon that elicited a heightened inflammatory response in macrophages and MDSCs, including atpA, which encodes the alpha subunit of ATP synthase. An atpA transposon mutant (ΔatpA) had altered growth kinetics under both planktonic and biofilm conditions, along with a diffuse biofilm architecture that was permissive for leukocyte infiltration, as observed by confocal laser scanning microscopy. Coculture of MDSCs and macrophages with ΔatpA biofilm elicited significant increases in the proinflammatory cytokines interleukin 12p70 (IL-12p70), tumor necrosis factor alpha (TNF-α), and IL-6. This was attributed to increased leukocyte survival resulting from less toxin and protease production by ΔatpA biofilm as determined by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The enhanced inflammatory response elicited by ΔatpA biofilm was cell lysis-dependent since it was negated by polyanethole sodium sulfanate treatment or deletion of the major autolysin, Atl. In a mouse model of PJI, ΔatpA-infected mice had decreased MDSCs concomitant with increased monocyte/macrophage infiltrates and proinflammatory cytokine production, which resulted in biofilm clearance. These studies identify S. aureus ATP synthase as an important factor in influencing the immune response during biofilm-associated infection and bacterial persistence. IMPORTANCE Medical device-associated biofilm infections are a therapeutic challenge based on their antibiotic tolerance and ability to evade immune-mediated clearance. The virulence determinants responsible for bacterial biofilm to induce a maladaptive immune response remain largely unknown. This study identified a critical role for S. aureus ATP synthase in influencing the host immune response to biofilm infection. An S. aureus ATP synthase alpha subunit mutant (ΔatpA) elicited heightened proinflammatory cytokine production by leukocytes in vitro and in vivo, which coincided with improved biofilm clearance in a mouse model of prosthetic joint infection. The ability of S. aureus ΔatpA to augment host proinflammatory responses was cell lysis-dependent, as inhibition of bacterial lysis by polyanethole sodium sulfanate or a ΔatpAΔatl biofilm did not elicit heightened cytokine production. These studies reveal a critical role for AtpA in shaping the host immune response to S. aureus biofilm

    ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function

    Get PDF
    Understandingthepathogenicmechanismsof diseasemutations is critical toadvancingtreatments.ALS-associated mutations in the gene encoding the microtubulemotor KIF5A result in skipping of exon 27 (KIF5ADExon27) and the encoding of a protein with a novel 39 amino acid residue C-terminal sequence. Here, we report that expression of ALS-linked mutant KIF5A results in dysregulated motor activity, cellular mislocalization, altered axonal transport, and decreased neuronal survival. Single-molecule analysis revealed that the altered C terminus of mutant KIF5A results in a constitutively active state. Furthermore,mutant KIF5A possesses altered protein and RNA interactions and its expression results in altered gene expression/splicing. Taken together, our data support the hypothesis that causative ALS mutations result in a toxic gain of function in the intracellular motor KIF5A that disrupts intracellular trafficking and neuronal homeostasis

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Understanding the circumgalactic medium is critical for understanding galaxy evolution

    Full text link
    Galaxies evolve under the influence of gas flows between their interstellar medium and their surrounding gaseous halos known as the circumgalactic medium (CGM). The CGM is a major reservoir of galactic baryons and metals, and plays a key role in the long cycles of accretion, feedback, and recycling of gas that drive star formation. In order to fully understand the physical processes at work within galaxies, it is therefore essential to have a firm understanding of the composition, structure, kinematics, thermodynamics, and evolution of the CGM. In this white paper we outline connections between the CGM and galactic star formation histories, internal kinematics, chemical evolution, quenching, satellite evolution, dark matter halo occupation, and the reionization of the larger-scale intergalactic medium in light of the advances that will be made on these topics in the 2020s. We argue that, in the next decade, fundamental progress on all of these major issues depends critically on improved empirical characterization and theoretical understanding of the CGM. In particular, we discuss how future advances in spatially-resolved CGM observations at high spectral resolution, broader characterization of the CGM across galaxy mass and redshift, and expected breakthroughs in cosmological hydrodynamic simulations will help resolve these major problems in galaxy evolution.Comment: Astro2020 Decadal Science White Pape

    Evidence in the learning organization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organizational leaders in business and medicine have been experiencing a similar dilemma: how to ensure that their organizational members are adopting work innovations in a timely fashion. Organizational leaders in healthcare have attempted to resolve this dilemma by offering specific solutions, such as evidence-based medicine (EBM), but organizations are still not systematically adopting evidence-based practice innovations as rapidly as expected by policy-makers (the knowing-doing gap problem). Some business leaders have adopted a systems-based perspective, called the learning organization (LO), to address a similar dilemma. Three years ago, the Society of General Internal Medicine's Evidence-based Medicine Task Force began an inquiry to integrate the EBM and LO concepts into one model to address the knowing-doing gap problem.</p> <p>Methods</p> <p>During the model development process, the authors searched several databases for relevant LO frameworks and their related concepts by using a broad search strategy. To identify the key LO frameworks and consolidate them into one model, the authors used consensus-based decision-making and a narrative thematic synthesis guided by several qualitative criteria. The authors subjected the model to external, independent review and improved upon its design with this feedback.</p> <p>Results</p> <p>The authors found seven LO frameworks particularly relevant to evidence-based practice innovations in organizations. The authors describe their interpretations of these frameworks for healthcare organizations, the process they used to integrate the LO frameworks with EBM principles, and the resulting Evidence in the Learning Organization (ELO) model. They also provide a health organization scenario to illustrate ELO concepts in application.</p> <p>Conclusion</p> <p>The authors intend, by sharing the LO frameworks and the ELO model, to help organizations identify their capacities to learn and share knowledge about evidence-based practice innovations. The ELO model will need further validation and improvement through its use in organizational settings and applied health services research.</p

    Latitude dictates plant diversity effects on instream decomposition

    Get PDF
    Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113 degrees of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    End-Stage Renal Disease Among HIV-Infected Adults in North America

    Get PDF
    Background. Human immunodeficiency virus (HIV)-infected adults, particularly those of black race, are at high-risk for end-stage renal disease (ESRD), but contributing factors are evolving. We hypothesized that improvements in HIV treatment have led to declines in risk of ESRD, particularly among HIV-infected blacks
    corecore