47 research outputs found

    Rayleigh Imaging of Graphene and Graphene Layers

    Get PDF
    We investigate graphene and graphene layers on different substrates by monochromatic and white-light confocal Rayleigh scattering microscopy. The image contrast depends sensitively on the dielectric properties of the sample as well as the substrate geometry and can be described quantitatively using the complex refractive index of bulk graphite. For few layers (<6) the monochromatic contrast increases linearly with thickness: the samples behave as a superposition of single sheets which act as independent two dimensional electron gases. Thus, Rayleigh imaging is a general, simple and quick tool to identify graphene layers, that is readily combined with Raman scattering, which provides structural identification.Comment: 8 pages, 9 figure

    Direct synthesized graphene-like film on SiO₂: Mechanical and optical properties

    No full text
    Exploiting CVD technique for carbon deposition from C₂H₂+H₂+N₂ mixture, a graphene-like film synthesized directly on SiO₂ surface of SiO₂-Si structure was obtained. The graphene-like film was grown under thin Ni layer that is easy exfoliated from graphene-SiO₂-Si structure. Surface of the film was sufficiently smooth and reveals no winkles and holes; it has a good homogeneity and perfect adhesion to SiO₂ layer. Studying the micro-Raman spectra showed a graphene-like structure of the film; using atomic force microscopic technique, the thickness of film was determined (0.6 nm). Using spectroscopic ellipsometry and simple Cauchy model enabled us to estimate optical parameters of this graphene-like film

    Vertically-oriented nanoparticle dimer based on focused plasmonic trapping.

    Get PDF
    We proposed a vertically-oriented dimer structure based on focused plasmonic trapping of metallic nanoparticle. Quantitative FDTD calculations and qualitative analysis by simplified dipole approximation revealed that localized surface plasmon coupling dominates in the plasmon hybridization, and the vertically-oriented dimer can effectively make use of the dominant longitudinal component of the surface plasmon virtual probe thus providing much stronger electric field in the gap. Furthermore, for practical application the top nanoparticle of the dimer can be replaced with an atomic force microscope tip which enables the precise control of the gap distance of the dimer. Therefore the proposed vertically-oriented dimer structure provides both the scanning capability and the extremely-high electrical field necessary for the high sensitivity Raman imaging.This work is partly supported by UK EPSRC Research Grant EP/L019787/1 and EP/K023349/1. Z.S. gratefully acknowledges the financial support from China Scholarship Council (No.201408060330)

    Tip-enhanced near-field optical microscopy

    Get PDF
    Tip-enhanced near-field optical microscopy (TENOM) is a scanning probe technique capable of providing a broad range of spectroscopic information on single objects and structured surfaces at nanometer spatial resolution and with highest detection sensitivity. In this review, we first illustrate the physical principle of TENOM that utilizes the antenna function of a sharp probe to efficiently couple light to excitations on nanometer length scales. We then discuss the antenna-induced enhancement of different optical sample responses including Raman scattering, fluorescence, generation of photocurrent and electroluminescence. Different experimental realizations are presented and several recent examples that demonstrate the capabilities of the technique are reviewed

    Spectral-ellipsometric examining the films of gold nanoparticles on Si/SiO₂ substrate

    No full text
    We have investigated optical properties of films of gold nanoparticles on Si/SiO₂ substrate by using the method of spectroscopic ellipsometry in dependence on morphology of the films. Different morphology of the films was obtained by flashannealing at various temperatures of identical sputtered thin gold layers. Ellipsometric spectra were compared with account of pictures of the films obtained by scanned electron microscopy. Remarkable dependence of depolarization of the reflected light with the frequency of localized plasmon resonance versus the film morphology was found
    corecore