370 research outputs found

    Optical anisotropy induced by ion bombardment of Ag(001)

    Get PDF
    Grazing incidence ion bombardment results in the formation of nanoripples that induce an anisotropic optical reflection The evolution of the reflectance anisotropy has been monitored in situ with reflectance anisotropy spectroscopy. The Rayleigh-Rice theory (RRT) has been used to analyze the optical spectra quantitatively and provides the evolution of the average ripple period and root-mean-squared surface roughness. After an incipient phase, both the increase in the periodicity and the roughness vary roughly with the square root of the sputter time. Additional high-resolution low-energy electron diffraction (HR-LEED) measurements have been performed to characterize details of the average structure created by ion bombardment

    Deconvolution, differentiation and Fourier transformation algorithms for noise-containing data based on splines and global approximation

    Get PDF
    One of the main problems in the analysis of measured spectra is how to reduce the influence of noise in data processing. We show a deconvolution, a differentiation and a Fourier Transform algorithm that can be run on a small computer (64 K RAM) and suffer less from noise than commonly used routines. This objective is achieved by implementing spline based functions in mathematical operations to obtain global approximation properties in our routines. The convenient behaviour and the pleasant mathematical character of splines makes it possible to perform these mathematical operations on large data input in a limited computing time on a small computer system. Comparison is made with widely used routines

    Kinetics of the adsorption of atomic oxygen (N2O) on the Si(001)2x1 surface as revealed by the change in the surface conductance

    Get PDF
    The adsorption behaviour of N2O on the Si(001)2 × 1 surface at 300 K substrate temperature has been investigated by measuring in situ the surface conductance during the reaction process. For comparison we monitored in the same way the adsorption of O2 on the same surface which ultimately leads to the flat band situation. The adsorption of atomic oxygen as released by decomposition of the N2O molecule, in contrast with molecular oxygen, was found to result in an increase of the band bending. The difference in behaviour of the change of the surface conductance between the two solid-gas reactions can be explained by considering that the adsorption of O2 will also remove deep-lying backbond states in addition to the dangling bond (DB) and dimer bond (DM) related surface states. It is well known that only the DB and DM surface states are affected by N2O. The surface conductance measurements (SCM) presented in this paper complement our previous spectroscopic differential reflectivity measurements and Auger electron spectroscopic results for the system Si(001)2 × 1 + N2O; we have found evidence that the second step of the proposed three-stage adsorption process of atomic oxygen can be divided into two substages. From our SCM data we could derive that the distance between the valence band edge and the Fermi energy of the clean Si(001)2 × 1 surface is 0.32 ± 0.02 eV, which is in agreement with previous photoemission results

    The influence of inter-atomic transitions in Auger valence band spectroscopy: oxygen on Si(001)2x1

    Get PDF
    In this paper we will show that the description of an Auger process in terms of a process confined to one atom is in general not adequate and the Mulliken population is only in very specific cases a good alternative in evaluating the strength of inter-atomic transitions. The ionicity of the chemical bond cannot be used as a direct measure of the contribution of inter-atomic Auger transitions, as will be demonstrated in the case of the oxygen KVV Auger transitions in gaseous molecular oxygen and oxygen chemisorbed on the Si(001) surface. A full evaluation of inter-atomic transition rates shows that their strength depends on the inter-atomic distance as well as on the screening of the initial core hole

    Optical anisotropy of Ge(001)

    Get PDF
    The surface induced optical anisotropy in the electronic structure of clean Ge(001) 2×1 was studied with an ellipsometer at normal incidence. The change in the reflection difference between light polarized parallel and perpendicular to the dimer bond at this surface upon either absorption of molecular oxygen or Ar+ ion bombardment was recorded. Both procedures were found to give the same results. It was possible to obtain a qualitative agreement of the optical spectrum recorded and the position and parity of the occupied and unoccupied surface states known on the clean surface

    The influence of the (2 × 1) reconstruction of the Si(1 0 0) surface on the Si---L2,3 VV Auger lineshape

    Get PDF
    The extreme surface sensitiveness of the Si---L2,3 VV Auger process and its ability to probe the atomic electron distribution in the direct neighbourhood of the L2,3-core-hold makes this electron spectroscopic technique a candidate for investigations of the local changes in the electron distribution due to surface reconstruction. In this paper we show, explicitly, the influence of the (2 × 1) reconstruction of the Si(1 0 0) surface on the Si---L2,3 VV Auger lineshape. Furthermore, the calculated Auger lineshape will be compared with an experimentally obtained line profile

    Transition density of states (TDOS) of the Si(100)2 × 1 surface derived from the L2,3VV Auger lineshape compared with cluster calculations

    Get PDF
    The termination of a silicon crystal along the (100) orientation resulting in a 2 × 1 reconstructed surface induces relatively large variations in the local density of states (LDOS) of the different types of surface atoms, such as the up and down dimer atom and the backbond atom. Auger electron spectroscopy (AES) is able to probe the LDOS of the silicon atom in which the L2,3 core hole has been created and is therefore a candidate to analyze the LDOS of the surface atoms. A detailed analysis of the SiL2,3VV Auger electron spectrum allows us to determine a high quality transition density of state (TDOS) of the Si(100)2 × 1 reconstructed surface. The resolved peaks in the TDOS were compared with previous AES, UPS and EELS measurements reported by other investigators. Quantum chemical cluster calculations were used for the interpretation of the TDOS in the actual p-like and s-like partial local density of states for different types of silicon atoms. These quantum chemical cluster calculations of the partial LDOS localized at atoms of the Si(100)2 × 1 surface were found to be in agreement with other types of calculations. Comparing the experimental and the calculated DOS we were able to distinguish several new peaks in the TDOS obtained with AES and to discriminate features in the experimentally obtained TDOS into local electron distributions localized at different surface atoms
    • …
    corecore