10 research outputs found
Influenza surveillance in Europe: comparing intensity levels calculated using the moving epidemic method.
Although influenza-like illnesses (ILI) and acute respiratory illnesses (ARI) surveillance are well established in Europe, the comparability of intensity among countries and seasons remains an unresolved challenge. The objective is to compare the intensity of ILI and ARI in some European countries.
Weekly ILI and ARI incidence rates and proportion of primary care consultations were modeled in 28 countries for the 1996/1997-2013/2014 seasons using the moving epidemic method (MEM). We calculated the epidemic threshold and three intensity thresholds, which delimit five intensity levels: baseline, low, medium, high, and very high. The intensity of 2013/2014 season is described and compared by country.
The lowest ILI epidemic thresholds appeared in Sweden and Estonia (below 10 cases per 100 000) and the highest in Belgium, Denmark, Hungary, Poland, Serbia, and Slovakia (above 100 per 100 000). The 2009/2010 season was the most intense, with 35% of the countries showing high or very high intensity levels. The European epidemic period in season 2013/2014 started in January 2014 in Spain, Poland, and Greece. The intensity was between low and medium and only Greece reached the high intensity level, in weeks 7 to 9/2014. Some countries remained at the baseline level throughout the entire surveillance period.
Epidemic and intensity thresholds varied by country. Influenza-like illnesses and ARI levels normalized by MEM in 2013/2014 showed that the intensity of the season in Europe was between low and medium in most of the countries. Comparing intensity among seasons or countries is essential for understanding patterns in seasonal epidemics. An automated standardized model for comparison should be implemented at national and international levels.This work has been funded by the National and International Public Institutions and the Regional Health Department of Castilla y León (Spain).S
Discovering a new part of the phenotypic spectrum of Coffin-Siris syndrome in a fetal cohort
Purpose: Genome-wide sequencing is increasingly being performed during pregnancy to identify the genetic cause of congenital anomalies. The interpretation of prenatally identified variants can be challenging and is hampered by our often limited knowledge of prenatal phenotypes. To better delineate the prenatal phenotype of Coffin-Siris syndrome (CSS), we collected clinical data from patients with a prenatal phenotype and a pathogenic variant in one of the CSS-associated genes. Methods: Clinical data was collected through an extensive web-based survey. Results: We included 44 patients with a variant in a CSS-associated gene and a prenatal phenotype; 9 of these patients have been reported before. Prenatal anomalies that were frequently observed in our cohort include hydrocephalus, agenesis of the corpus callosum, hypoplastic left heart syndrome, persistent left vena cava, diaphragmatic hernia, renal agenesis, and intrauterine growth restriction. Anal anomalies were frequently identified after birth in patients with ARID1A variants (6/14, 43%). Interestingly, pathogenic ARID1A variants were much more frequently identified in the current prenatal cohort (16/44, 36%) than in postnatal CSS cohorts (5%-9%). Conclusion: Our data shed new light on the prenatal phenotype of patients with pathogenic variants in CSS genes
YY1 haploinsufficiency causes an intellectual disability syndrome featuring transcriptional and chromatin dysfunction
Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define “YY1 syndrome” as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals’ cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators