172 research outputs found

    Making sense of mass education

    Get PDF

    New Optical Reddening Maps of the Large and Small Magellanic Clouds

    Full text link
    We present new reddening maps of the SMC and LMC based on the data of the third phase of the Optical Gravitational Lensing Experiment (OGLE III). We have used two different methods to derive optical reddening maps. We adopt a theoretical mean unreddened colour for the red clump in the SMC and LMC, respectively. We subdivide the photometric data for both Clouds into subfields and calculate the difference between the observed red clump position and the theoretical value for each field, which provides us with the reddening value in (V-I). Furthermore reddening values are obtained for 13490 LMC RR Lyrae ab and 1529 SMC RR Lyrae ab stars covering the whole OGLE III region of the MCs. The observed colours (V-I) of the RR Lyrae stars are compared with the colour from the absolute magnitudes. The absolute magnitude of each RR Lyrae star is computed using its period and metallicity derived from Fourier decomposition of its lightcurve. In general we find a low and uniform reddening distribution in both Magellanic Clouds. The red clump method indicates a mean reddening of the LMC of E(V-I) = 0.09 +/- 0.07 mag, while for the SMC E(V-I) = 0.04 +/- 0.06 mag is obtained. With RR Lyrae stars a median value of E(V-I) = 0.11 +/- 0.06 mag for the LMC and E(V-I) = 0.07 +/- 0.06 mag for the SMC is found. The LMC shows very low reddening in the bar region, whereas the reddening in the star-forming leading edge and 30 Doradus is considerably higher. In the SMC three pronounced regions with higher reddening are visible. Two are located along the bar, while the highest reddening is found in the star-forming wing of the SMC. In general the regions with higher reddening are in good spatial agreement with infrared reddening maps as well as with reddening estimations of other studies. The position-dependent reddening values from the red clump method are available via the Virtual Observatory interface.Comment: 15 pages, 22 Figures, AJ publishe

    The Role of Dwarf Galaxy Interactions in Shaping the Magellanic System and Implications for Magellanic Irregulars

    Full text link
    We present a novel pair of numerical models of the interaction history between the Large and Small Magellanic Clouds (LMC and SMC, respectively) and our Milky Way (MW) in light of recent high precision proper motions (Kallivayalil et al. 2006a,b). Given the new velocities, cosmological simulations of structure formation favor a scenario where the Magellanic Clouds (MCs) are currently on their first infall towards our Galaxy (Boylan-Kolchin et al. 2011, Busha et al. 2011). We illustrate here that the observed irregular morphology and internal kinematics of the MCs (in gas and stars) are naturally explained by interactions between the LMC and SMC, rather than gravitational interactions with the MW. This picture further supports a first infall scenario (Besla et a. 2007). In particular, we demonstrate that the Magellanic Stream, a band of HI gas trailing behind the MCs 150 degrees across the sky, can be accounted for by the action of LMC tides on the SMC before the system was accreted by the MW. We further demonstrate that the off-center, warped stellar bar of the LMC and its one-armed spiral, can be naturally explained by a recent direct collision with the SMC. Such structures are key morphological characteristics of a class of galaxies referred to as Magellanic Irregulars (de Vaucouleurs & Freeman 1972), the majority of which are not associated with massive spiral galaxies. We infer that dwarf-dwarf galaxy interactions are important drivers for the morphological evolution of Magellanic Irregulars and can dramatically affect the efficiency of baryon removal from dwarf galaxies via the formation of extended tidal bridges and tails. Such interactions are important not only for the evolution of dwarf galaxies but also have direct consequences for the buildup of baryons in our own MW, as LMC-mass systems are believed to be the dominant building blocks of MW-type halos.Comment: 33 pages, 21 figures, Accepted for publication in MNRAS, Dec 23 201

    Geodesic rewriting systems and pregroups

    Full text link
    In this paper we study rewriting systems for groups and monoids, focusing on situations where finite convergent systems may be difficult to find or do not exist. We consider systems which have no length increasing rules and are confluent and then systems in which the length reducing rules lead to geodesics. Combining these properties we arrive at our main object of study which we call geodesically perfect rewriting systems. We show that these are well-behaved and convenient to use, and give several examples of classes of groups for which they can be constructed from natural presentations. We describe a Knuth-Bendix completion process to construct such systems, show how they may be found with the help of Stallings' pregroups and conversely may be used to construct such pregroups.Comment: 44 pages, to appear in "Combinatorial and Geometric Group Theory, Dortmund and Carleton Conferences". Series: Trends in Mathematics. Bogopolski, O.; Bumagin, I.; Kharlampovich, O.; Ventura, E. (Eds.) 2009, Approx. 350 p., Hardcover. ISBN: 978-3-7643-9910-8 Birkhause

    The manipulation of massive ro-vibronic superpositions using time-frequency-resolved coherent anti-Stokes Raman scattering (TFRCARS): from quantum control to quantum computing

    Full text link
    Molecular ro-vibronic coherences, joint energy-time distributions of quantum amplitudes, are selectively prepared, manipulated, and imaged in Time-Frequency-Resolved Coherent Anti-Stokes Raman Scattering (TFRCARS) measurements using femtosecond laser pulses. The studies are implemented in iodine vapor, with its thermally occupied statistical ro-vibrational density serving as initial state. The evolution of the massive ro-vibronic superpositions, consisting of 1000 eigenstates, is followed through two-dimensional images. The first- and second-order coherences are captured using time-integrated frequency-resolved CARS, while the third-order coherence is captured using time-gated frequency-resolved CARS. The Fourier filtering provided by time integrated detection projects out single ro-vibronic transitions, while time-gated detection allows the projection of arbitrary ro-vibronic superpositions from the coherent third-order polarization. Beside the control and imaging of chemistry, the controlled manipulation of massive quantum coherences suggests the possibility of quantum computing. We argue that the universal logic gates necessary for arbitrary quantum computing - all single qubit operations and the two-qubit controlled-NOT (CNOT) gate - are available in time resolved four-wave mixing in a molecule. The molecular rotational manifold is naturally "wired" for carrying out all single qubit operations efficiently, and in parallel. We identify vibronic coherences as one example of a naturally available two-qubit CNOT gate, wherein the vibrational qubit controls the switching of the targeted electronic qubit.Comment: PDF format. 59 pages, including 22 figures. To appear in Chemical Physic

    An evolutionary perspective on the co-occurrence of social anxiety disorder and alcohol use disorder

    Get PDF
    Social Anxiety Disorder (SAD) commonly co-occurs with, and often precedes, Alcohol Use Disorder (AUD). In this paper, we address the relationship between SAD and AUD by considering how natural selection left socially anxious individuals vulnerable to alcohol use, and by addressing the underlying mechanisms. We review research suggesting that social anxiety has evolved for the regulation of behaviors involved in reducing the likelihood or consequences of threats to social status. The management of potential threats to social standing is important considering that these threats can result in reduced cooperation or ostracism – and therefore to reduced access to coalitional partners, resources or mates. Alcohol exerts effects upon evolutionarily conserved emotion circuits, and can down-regulate or block anxiety (or may be expected to do so). As such, the ingestion of alcohol can artificially signal the absence or successful management of social threats. In turn, alcohol use may be reinforced in socially anxious people because of this reduction in subjective malaise, and because it facilitates social behaviors – particularly in individuals for whom the persistent avoidance of social situations poses its own threat (i.e., difficulty finding mates). Although the frequent co-occurrence of SAD and AUD is associated with poorer treatment outcomes than either condition alone, a richer understanding of the biological and psychosocial drives underlying susceptibility to alcohol use among socially anxious individuals may improve the efficacy of therapeutic interventions aimed at preventing or treating this comorbidity

    The WOCE–era 3–D Pacific Ocean circulation and heat budget

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Progress In Oceanography 82 (2009): 281-325, doi:10.1016/j.pocean.2009.08.002.To address questions concerning the intensity and spatial structure of the 3–dimensional circulation within the Pacific Ocean and the associated advective and diffusive property flux divergences, data from approximately 3000 high–quality hydrographic stations collected on 40 zonal and meridional cruises have been merged into a physically consistent model. The majority of the stations were occupied as part of the World Ocean Circulation Experiment (WOCE), which took place in the 1990s. These data are supplemented by a few pre–WOCE surveys of similar quality, and time–averaged direct–velocity and historical hydrographic measurements about the equator. An inverse box model formalism is employed to estimate the absolute along–isopycnal velocity field, the magnitude and spatial distribution of the associated diapycnal flow and the corresponding diapycnal advective and diffusive property flux divergences. The resulting large–scale WOCE Pacific circulation can be described as two shallow overturning cells at mid– to low latitudes, one in each hemisphere, and a single deep cell which brings abyssal waters from the Southern Ocean into the Pacific where they upwell across isopycnals and are returned south as deep waters. Upwelling is seen to occur throughout most of the basin with generally larger dianeutral transport and greater mixing occurring at depth. The derived pattern of ocean heat transport divergence is compared to published results based on air–sea flux estimates. The synthesis suggests a strongly east/west oriented pattern of air–sea heat flux with heat loss to the atmosphere throughout most of the western basins, and a gain of heat throughout the tropics extending poleward through the eastern basins. The calculated meridional heat transport agrees well with previous hydrographic estimates. Consistent with many of the climatologies at a variety of latitudes as well, our meridional heat transport estimates tend toward lower values in both hemispheres.This work was funded by National Science Foundation grants OCE–9710102, OCE– 9712209 and OCE–0079383, and also benefited from work on closely related projects funded by NSF grants OCE–0223421 and OCE–0623261, and NOAA grant NA17RJ1223 funded through CICOR. For G.C.J. NASA funding came under Order W–19,314

    Experiments in the Control of a Flexible Robot Arm

    No full text
    ©1985 Society of Mechanical EngineersPresented at the 9th Robots Conference, June 2 - 6, 1985, Detroit, Michigan.Control of flexible manipulator arms offers high performance, light weight, and low cost over conventional rigid members. Presented is an experimental system for evaluating control systems. A dynamic modeling procedure is outlined and an optimal control system is discussed. Reconstruction of flexible modes is accomplished using strain gage data. Velocity of flexible modes is estimated with a reduced order observer. Experimental data is presented to verify dynamic modeling and modal reconstruction. Initial results using a deterministic optimal controller are presented
    • 

    corecore