130 research outputs found

    Outcomes in a community sex offender treatment program: A comparison between polygraphed and matched non-polygraphed offenders. Sexual Abuse: A

    Get PDF
    Abstract This study compared a group of 104 adult male sex offenders who received community cognitive-behavioral treatment, correctional supervision, and periodic polygraph compliance exams with a matched group of 104 sex offenders who received the same type of treatment and supervision services but no polygraph exams. Polygraph exams focused on whether participants were following their conditions of community supervision and treatment and had avoided committing new sexual offenses. The two groups were exact pair-wise matched on three variables: (1) Static-99 risk score (Hanson & Thornton 2000, Law and Human Behavior, 24, 119-136), (2) status as a completer of prison sex offender treatment, and (3) date placed in the community. At fixed 5-year follow-up periods, the number of individuals in the polygraph group charged with committing a new non-sexual violent offense was significantly lower than in the no polygraph group (2.9% versus 11.5%). However, there were no significant between-group differences for the number of individuals charged for new sexual (5.8% versus 6.7%), any sexual or violent (8.7% versus 16.3%), or any criminal offense (39.4% versus 34.6%). The results are discussed in terms of their clinical and research implications

    Microwave Spectroscopy of Thermally Excited Quasiparticles in YBa_2Cu_3O_{6.99}

    Full text link
    We present here the microwave surface impedance of a high purity crystal of YBa2Cu3O6.99YBa_2Cu_3O_{6.99} measured at 5 frequencies between 1 and 75 GHz. This data set reveals the main features of the conductivity spectrum of the thermally excited quasiparticles in the superconducting state. Below 20 K there is a regime of extremely long quasiparticle lifetimes, due to both the collapse of inelastic scattering below TcT_c and the very weak impurity scattering in the high purity BaZrO3BaZrO_3-grown crystal used in this study. Above 20 K, the scattering increases dramatically, initially at least as fast as T4T^4.Comment: 13 pages with 10 figures. submitted to Phys Rev

    Theory of Scanning Tunneling Spectroscopy of Magnetic-Field-Induced Discrete Nodal States in a D-Wave Superconductor

    Full text link
    In the presence of an external magnetic field, the low lying elementary excitations of a d-wave superconductor have quantized energy and their momenta are locked near the node direction. It is argued that these discrete states can most likely be detected by a local probe, such as a scanning tunneling microscope. The low temperature local tunneling conductance on the Wigner-Seitz cell boundaries of the vortex lattice is predicted to show peaks spaced as ±n,n=0,1,2,...\pm \sqrt{n}, n ={0,1,2, ...}. The n=0n=0 peak is anomalous, and it is present only if the superconducting order parameter changes sign at certain points on the Fermi surface. Away from the cell boundary, where the superfluid velocity is nonzero, each peak splits, in general, into four peaks, corresponding to the number of nodes in the order parameter.Comment: RevTeX 3.0, 4 pages, 3 figures (included

    Microwave determination of the quasiparticle scattering time in YBa2Cu3O6.95

    Get PDF
    We report microwave surface resistance (Rs) measurements on two very-high-quality YBa2Cu3O6.95 crystals which exhibit extremely low residual loss at 1.2 K (2-6 μΩ at 2 GHz), a broad, reproducible peak at around 38 K, and a rapid increase in loss, by 4 orders of magnitude, between 80 and 93 K. These data provide one ingredient in the determination of the temperature dependence of the real part of the microwave conductivity, σ1(T), and of the quasiparticle scattering time. The other necessary ingredient is an accurate knowledge of the magnitude and temperature dependence of the London penetration depth, λ(T). This is derived from published data, from microwave data of Anlage, Langley, and co-workers and from, high-quality μSR data. We infer, from a careful analysis of all available data, that λ2(0)/λ2(T) is well approximated by the simple function 1-t2, where t=T/Tc, and that the low-temperature data are incompatible with the existence of an s-wave, BCS-like gap. Combining the Rs and λ(T) data, we find that σ1(T), has a broad peak around 32 K with a value about 20 times that at Tc. Using a generalized two-fluid model, we extract the temperature dependence of the quasiparticle scattering rate which follows an exponential law, exp(T/T0), where T0≊12 K, for T between 15 and 84 K. Such a temperature dependence has previously been observed in measurements of the nuclear spin-lattice relaxation rate. Both the uncertainties in our analysis and the implications for the mechanism of high-temperature superconductivity are discussed

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Angle-resolved photoemission spectroscopy of the cuprate superconductors

    Full text link
    This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature in this field. The low energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and d-wave-like dispersion, evidence of electronic inhomogeneity and nano-scale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides a brief overview of the scientific issues relevant to the investigation of the low energy electronic structure by ARPES. The rest of the paper is devoted to the review of experimental results from the cuprates and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self energy and collective modes. Within each topic, ARPES data from the various copper oxides are presented.Comment: Reviews of Modern Physics, in press. A HIGH-QUALITY pdf file is available at http://www.physics.ubc.ca/~damascel/RMP_ARPES.pd

    Recent experimental probes of shear banding

    Get PDF
    Recent experimental techniques used to investigate shear banding are reviewed. After recalling the rheological signature of shear-banded flows, we summarize the various tools for measuring locally the microstructure and the velocity field under shear. Local velocity measurements using dynamic light scattering and ultrasound are emphasized. A few results are extracted from current works to illustrate open questions and directions for future research.Comment: Review paper, 23 pages, 11 figures, 204 reference

    Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 LIGO data

    Get PDF
    International audienceWe present a search for gravitational waves from 222 pulsars with rotation frequencies ≳10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015–2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsar’s rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars’ spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711−6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the star’s moment of inertia, and imply a gravitational-wave-derived upper limit on the star’s ellipticity of 1.2 × 10−8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars

    All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    Get PDF
    After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1  s and “long” ≳1  s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo’s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2–500 s in duration and a frequency band of 24–2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8
    corecore