5 research outputs found

    Quantitative precipitation forecasting in the Alps: the advances achieved by the Mesoscale Alpine Programme

    No full text
    The improvement of Quantitative Precipitation Forecasting (QPF) in mountainous regions was a major supporting objective of the Mesoscale Alpine Programme (MAP) project P1 devoted to the study of orographic precipitation. This paper reviews the main MAP‐related achievements regarding QPF improvement and highlights the MAP impact on developing QPF research and planning future operational strategies. Recent results based on MAP case‐studies, on data analysis and assimilation, on quantification of model uncertainties, and on model intercomparison and verification substantiate the progress made in recent years in improving model performance in relation to short‐range, high‐resolution forecasting in complex topography regions, well represented by the European Alps

    Madden-Julian Oscillation

    No full text
    [1] The Madden-Julian Oscillation (MJO) is the dominant component of the intraseasonal (30–90 days) variability in the tropical atmosphere. It consists of large-scale coupled patterns in atmospheric circulation and deep convection, with coherent signals in many other variables, all propagating eastward slowly (5 m s1) through the portion of the Indian and Pacific oceans where the sea surface is warm. It constantly interacts with the underlying ocean and influences many weather and climate systems. The past decade has witnessed an expeditious progress in the study of the MJO: Its large-scale and multiscale structures are better described, its scale interaction is recognized, its broad influences on tropical and extratropical weather and climate are increasingly appreciated, and its mechanisms for disturbing the ocean are further comprehended. Yet we are facing great difficulties in accurately simulating and predicting the MJO using sophisticated global weather forecast and climate models, and we are unable to explain such difficulties based on existing theories of the MJO. It is fair to say that the MJO remains an unmet challenge to our understanding of the tropical atmosphere and to our ability to simulate and predict its variability. This review, motivated by both the acceleration and gaps in our knowledge of the MJO, intends to synthesize what we currently know and what we do not know on selected topics: its observed basic characteristics, mechanisms, numerical modeling, air-sea interaction, and influences on the El Niño and Southern Oscillation
    corecore