223 research outputs found

    The Grey

    Get PDF
    This is a film review of The Grey (2011), directed by Joe Carnahan

    Life of Pi

    Get PDF
    This is a film review of Life of Pi (2012) directed by Ang Lee

    Philomena

    Get PDF
    This is a film review of Philomena (2013), directed by Stephen Frears

    Stations of the Cross (Kreuzweg)

    Get PDF
    This is a film review of Stations of the Cross (Kreuzweg) (2014) directed by Dietrich BrĂŒggeman

    Henry Poole Is Here

    Get PDF
    This is a review of Henry Poole Is Here (2008)

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    The Eleventh and Twelfth data releases of the Sloan Digital Sky Survey: Final data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) tookdata from 2008 to 2014 using the original SDSS wide-field imager, theoriginal and an upgraded multi-object fiber-fed optical spectrograph, anew near-infrared high-resolution spectrograph, and a novel opticalinterferometer. All of the data from SDSS-III are now made public. Inparticular, this paper describes Data Release 11 (DR11) including alldata acquired through 2013 July, and Data Release 12 (DR12) adding dataacquired through 2014 July (including all data included in previous datareleases), marking the end of SDSS-III observing. Relative to ourprevious public release (DR10), DR12 adds one million new spectra ofgalaxies and quasars from the Baryon Oscillation Spectroscopic Survey(BOSS) over an additional 3000 deg2 of sky, more than triplesthe number of H-band spectra of stars as part of the Apache PointObservatory (APO) Galactic Evolution Experiment (APOGEE), and includesrepeated accurate radial velocity measurements of 5500 stars from theMulti-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS).The APOGEE outputs now include the measured abundances of 15 differentelements for each star. In total, SDSS-III added 5200 deg2 ofugriz imaging; 155,520 spectra of 138,099 stars as part of the SloanExploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey;2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and247,216 stars over 9376 deg2; 618,080 APOGEE spectra of156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since itsfirst light in 1998, SDSS has imaged over 1/3 of the Celestial sphere infive bands and obtained over five million astronomical spectra.Fil: Alam, Shadab. University of Carnegie Mellon; Estados UnidosFil: Albareti, Franco D.. Universidad AutĂłnoma de Madrid; EspañaFil: Prieto, Carlos Allende. Universidad de La Laguna; EspañaFil: Anders, F.. Leibniz Institute For Astrophysics Potsdam; AlemaniaFil: Anderson, Scott F.. University of Utah; Estados UnidosFil: Anderton, Timothy. University of Utah; Estados UnidosFil: Andrews, Brett H.. Ohio State University; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Armengaud, Eric. Service de Physique Des Particules; FranciaFil: Aubourg, Éric. UniversitĂ© Paris Diderot - Paris 7; FranciaFil: Bailey, Stephen. Lawrence Berkeley National Laboratory; Estados UnidosFil: Basu, Sarbani. University of Yale; Estados UnidosFil: Bautista, Julian E.. UniversitĂ© Paris Diderot - Paris 7; FranciaFil: Beaton, Rachael L.. University of Virginia; Estados UnidosFil: Beers, Timothy C.. University of Notre Dame; Estados UnidosFil: Bender, Chad F.. Pennsylvania State University; Estados UnidosFil: Berlind, Andreas A.. Vanderbilt University; Estados UnidosFil: Beutler, Florian. Lawrence Berkeley National Laboratory; Estados UnidosFil: Bhardwaj, Vaishali. Lawrence Berkeley National Laboratory; Estados UnidosFil: Bird, Jonathan C.. Vanderbilt University; Estados UnidosFil: Bizyaev, Dmitry. Apache Point Observatory; Estados UnidosFil: Blake, Cullen H.. University of Pennsylvania; Estados UnidosFil: Blanton, Michael R.. New York University; Estados UnidosFil: Blomqvist, Michael. University of California at Irvine; Estados UnidosFil: Bochanski, John J.. University of Washington; Estados UnidosFil: Bolton, Adam S.. University of Utah; Estados UnidosFil: Bovy, Jo. Institute For Advanced Studies; Estados UnidosFil: Shelden, Bradley, A.. Apache Point Observatory; Estados UnidosFil: Brandt, W. N.. Pennsylvania State University; Estados UnidosFil: Brauer, D. E.. Leibniz Institute For Astrophysics Potsdam; AlemaniaFil: Nuza, Sebastian Ernesto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂ­a y FĂ­sica del Espacio; Argentina. Institut Max Planck Fuer Gesellschaft. Max Planck Institute For Extraterrestrial Physics; AlemaniaFil: Scoccola, Claudia Graciela. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; Argentin

    THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, explores the stellar populations of the Milky Way using the Sloan 2.5-m telescope linked to a high resolution (R ~ 22,500), near-infrared (1.51–1.70 ”m) spectrograph with 300 optical fibers. For over 150,000 predominantly red giant branch stars that APOGEE targeted across the Galactic bulge, disks and halo, the collected high signal-to-noise ratio (>100 per half-resolution element) spectra provide accurate (~0.1 km s-1) RVs, stellar atmospheric parameters, and precise (lesssim0.1 dex) chemical abundances for about 15 chemical species. Here we describe the basic APOGEE data reduction software that reduces multiple 3D raw data cubes into calibrated, well-sampled, combined 1D spectra, as implemented for the SDSS-III/APOGEE data releases (DR10, DR11 and DR12). The processing of the near-IR spectral data of APOGEE presents some challenges for reduction, including automated sky subtraction and telluric correction over a 3°-diameter field and the combination of spectrally dithered spectra. We also discuss areas for future improvement

    Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor

    Get PDF
    Background: The androgen receptor (AR) plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied, but its prohibitive response program has not yet been thoroughly studied. Methodology/Principal Findings: Previous studies found that PC3 cells expressing the wild-type AR inhibit growth and suppress invasion. We applied expression profiling to identify the response program of PC3 cells expressing the AR (PC3-AR) under different growth conditions (i.e. with or without androgens and at different concentration of androgens) and then applied the newly developed ChIP-seq technology to identify the AR binding regions in the PC3 cancer genome. A surprising finding was that the comparison of MOCK-transfected PC3 cells with AR-transfected cells identified 3,452 differentially expressed genes (two fold cutoff) even without the addition of androgens (i.e. in ethanol control), suggesting that a ligand independent activation or extremely low-level androgen activation of the AR. ChIP-Seq analysis revealed 6,629 AR binding regions in the cancer genome of PC3 cells with an FDR (false discovery rate) cut off of 0.05. About 22.4 % (638 o

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    • 

    corecore