494 research outputs found

    Improvement in Prediction of Coronary Heart Disease Risk over Conventional Risk Factors Using SNPs Identified in Genome-Wide Association Studies

    Get PDF
    We examined whether a panel of SNPs, systematically selected from genome-wide association studies (GWAS), could improve risk prediction of coronary heart disease (CHD), over-and-above conventional risk factors. These SNPs have already demonstrated reproducible associations with CHD; here we examined their use in long-term risk prediction.SNPs identified from meta-analyses of GWAS of CHD were tested in 840 men and women aged 55-75 from the Edinburgh Artery Study, a prospective, population-based study with 15 years of follow-up. Cox proportional hazards models were used to evaluate the addition of SNPs to conventional risk factors in prediction of CHD risk. CHD was classified as myocardial infarction (MI), coronary intervention (angioplasty, or coronary artery bypass surgery), angina and/or unspecified ischaemic heart disease as a cause of death; additional analyses were limited to MI or coronary intervention. Model performance was assessed by changes in discrimination and net reclassification improvement (NRI).There were significant improvements with addition of 27 SNPs to conventional risk factors for prediction of CHD (NRI of 54%, P<0.001; C-index 0.671 to 0.740, P = 0.001), as well as MI or coronary intervention, (NRI of 44%, P<0.001; C-index 0.717 to 0.750, P = 0.256). ROC curves showed that addition of SNPs better improved discrimination when the sensitivity of conventional risk factors was low for prediction of MI or coronary intervention.There was significant improvement in risk prediction of CHD over 15 years when SNPs identified from GWAS were added to conventional risk factors. This effect may be particularly useful for identifying individuals with a low prognostic index who are in fact at increased risk of disease than indicated by conventional risk factors alone

    Improving Access to Treatment for Opioid Use Disorder in High-Need Areas: The Role of HRSA Health Centers

    Get PDF
    Introduction: Despite the opioid epidemic adversely affecting areas across the U.S. for more than two decades and increasing evidence that medication-assisted treatment (MAT) is effective for patients with opioid use disorder (OUD), access to treatment is still limited. The limited access to treatment holds true in the Appalachia region despite being disproportionately affected by the crisis, particularly in rural, central Appalachia. Purpose: This research identifies opportunities for health centers located in high-need areas based on drug poisoning mortality to better meet MAT care gaps. We also provide an in-depth look at health center MAT capacity relative to need in the Appalachia region. Methods: The analysis included county-level drug poisoning mortality data (2013–2015) from the National Center for Health Statistics (NCHS)and Health Center Program Awardee and Look-Alike data (2017) on the number of providers with a DATA waiver to provide medication-assisted treatment (MAT) and the number of patients receiving MAT for the U.S. Several geospatial methods were used including an Empirical Bayes approach to estimate drug poisoning mortality, excess risk maps to identify outliers, and the Local Moran’s I tool to identify clusters of high drug poisoning mortality counties. Results: High-need counties were disproportionately located in the Appalachia region. More than 6 in 10 health centers in high-need counties have the potential to expand MAT delivery to patients. Implications: The results indicate an opportunity to increase health center capacity for providing treatment for opioid use disorder in high-need areas, particularly in central and northern Appalachia

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version

    THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, explores the stellar populations of the Milky Way using the Sloan 2.5-m telescope linked to a high resolution (R ~ 22,500), near-infrared (1.51–1.70 µm) spectrograph with 300 optical fibers. For over 150,000 predominantly red giant branch stars that APOGEE targeted across the Galactic bulge, disks and halo, the collected high signal-to-noise ratio (>100 per half-resolution element) spectra provide accurate (~0.1 km s-1) RVs, stellar atmospheric parameters, and precise (lesssim0.1 dex) chemical abundances for about 15 chemical species. Here we describe the basic APOGEE data reduction software that reduces multiple 3D raw data cubes into calibrated, well-sampled, combined 1D spectra, as implemented for the SDSS-III/APOGEE data releases (DR10, DR11 and DR12). The processing of the near-IR spectral data of APOGEE presents some challenges for reduction, including automated sky subtraction and telluric correction over a 3°-diameter field and the combination of spectrally dithered spectra. We also discuss areas for future improvement
    corecore