446 research outputs found

    Young stars in Epsilon Cha and their disks: disk evolution in sparse associations

    Full text link
    (abridge) The nearby young stellar association Epsilon Cha association has an estimated age of 3-5 Myr, making it an ideal laboratory to study the disk dissipation process and provide empirical constraints on the timescale of planet formation. We combine the available literature data with our Spitzer IRS spectroscopy and VLT/VISIR imaging data. The very low mass stars USNO-B120144.7 and 2MASS J12005517 show globally depleted spectral energy distributions pointing at strong dust settling. 2MASS J12014343 may have a disk with a very specific inclination where the central star is effectively screened by the cold outer parts of a flared disk but the 10 micron radiation of the warm inner disk can still reach us. We find the disks in sparse stellar associations are dissipated more slowly than those in denser (cluster) environments. We detect C_{2}H_{2} rovibrational band around 13.7 micron on the IRS spectrum of USNO-B120144.7. We find strong signatures of grain growth and crystallization in all Epsilon Cha members with 10 micron features detected in their IRS spectra. We combine the dust properties derived in the Epsilon Cha sample with those found using identical or similar methods in the MBM 12, Coronet cluster, Eta Cha associations, and in the cores to disks (c2d) legacy program. We find that disks around low-mass young stars show a negative radial gradient in the mass-averaged grain size and mass fraction of crystalline silicates. A positive correlation exists between the mass-averaged grain sizes of amorphous silicates and the accretion rates if the latter is above ~10^{-9} Msun/yr, possibly indicating that those disks are sufficiently turbulent to prevent grains of several microns in size to sink into the disk interior.Comment: 17 pages, 18 figures, 6 tables, language revised; accepted to A&

    Resolving HD 100546 disc in the mid-infrared: Small inner disc and asymmetry near the gap

    Get PDF
    A region of roughly half of the solar system scale around the star HD 100546 is largely cleared of gas and dust, in contrast to the bright outer disc. However, some material is observed in the immediate vicinity of the star. We investigate how the dust is distributed within and outside the gap, and constrain the disc geometry with mid-infrared interferometric observations using VLTI/MIDI. With baseline lengths of 40m, our long baseline observations are sensitive to the inner few AU from the star, and we combined them with observations at shorter, 15m baselines, to probe emission beyond the gap at up to 20AU from the star. We modelled the mid-infrared emission using radial temperature profiles. Our model is composed of infinitesimal concentric annuli emitting as black bodies, and it has distinct inner and outer disc components. We derived an upper limit of 0.7AU for the radial size of the inner disc, from our longest baseline data. This small dusty disc is separated from the edge of the outer disc by a large, roughly 10AU wide gap. Our short baseline data place a bright ring of emission at 11+-1AU, consistent with prior observations of the transition region between the gap and the outer disc, known as the disc wall. The inclination and position angle are constrained by our data to i=53+-8deg and PA=145+-5deg. Compared to the rim and outer disc geometry this suggests co-planarity. Brightness asymmetry is evident in both short and long baseline data, and it is unequivocally discernible from any atmospheric or instrumental effects. The origin of the asymmetry is consistent with the bright disc wall, which we find to be 1-2AU wide. The gap is cleared of micron-sized dust, but we cannot rule out the presence of larger particles and/or perturbing bodies.Comment: 12 pages, 9 figures, accepted for publication in A&

    Variable accretion as a mechanism for brightness variations in T Tau S

    Full text link
    (Note: this is a shortened version of the original A&A-style structured abstract). The physical nature of the strong photometric variability of T Tau Sa, the more massive member of the Southern "infrared companion" to T Tau, has long been debated. Intrinsic luminosity variations due to variable accretion were originally proposed but later challenged in favor of apparent fluctuations due to time-variable foreground extinction. In this paper we use the timescale of the variability as a diagnostic for the underlying physical mechanism. Because the IR emission emerging from Sa is dominantly thermal emission from circumstellar dust at <=1500K, we can derive a minimum size of the region responsible for the time-variable emission. In the context of the variable foreground extinction scenario, this region must be (un-) covered within the variability timescale, which implies a minimum velocity for the obscuring foreground material. If this velocity supercedes the local Kepler velocity we can reject foreground extinction as a valid variability mechanism. The variable accretion scenario allows for shorter variability timescales since the variations in luminosity occur on much smaller scales, essentially at the surface of the star, and the disk surface can react almost instantly on the changing irradiation with a higher or lower dust temperature and according brightness. We have detected substantial variations at long wavelengths in T Tau S: +26% within four days at 12.8 micron. We show that this short-term variability cannot be due to variable extinction and instead must be due to variable accretion. Using a radiative transfer model of the Sa disk we show that variable accretion can in principle also account for the much larger (several magnitude) variations observed on timescales of several years. For the long-term variability, however, also variable foreground extinction is a viable mechanism.Comment: 15 pages, 8 figures, Accepted for publication in Astronomy and Astrophysic

    The 10 micron amorphous silicate feature of fractal aggregates and compact particles with complex shapes

    Get PDF
    We model the 10 micron absorption spectra of nonspherical particles composed of amorphous silicate. We consider two classes of particles, compact ones and fractal aggregates composed of homogeneous spheres. For the compact particles we consider Gaussian random spheres with various degrees of non-sphericity. For the fractal aggregates we compute the absorption spectra for various fractal dimensions. The 10 micron spectra are computed for ensembles of these particles in random orientation using the well-known Discrete Dipole Approximation. We compare our results to spectra obtained when using volume equivalent homogeneous spheres and to those computed using a porous sphere approximation. We conclude that, in general, nonspherical particles show a spectral signature that is similar to that of homogeneous spheres with a smaller material volume. This effect is overestimated when approximating the particles by porous spheres with the same volume filling fraction. For aggregates with fractal dimensions typically predicted for cosmic dust, we show that the spectral signature characteristic of very small homogeneous spheres (with a volume equivalent radius r_V<0.5 micron) can be detected even in very large particles. We conclude that particle sizes are underestimated when using homogeneous spheres to model the emission spectra of astronomical sources. In contrast, the particle sizes are severely overestimated when using equivalent porous spheres to fit observations of 10 micron silicate emission.Comment: Accepted for publication in A&

    Resolving the compact dusty discs around binary post-AGB stars using N-band interferometry

    Get PDF
    We present the first mid-IR long baseline interferometric observations of the circumstellar matter around binary post-AGB stars. Two objects, SX Cen and HD 52961, were observed using the VLTI/MIDI instrument during Science Demonstration Time. Both objects are known binaries for which a stable circumbinary disc is proposed to explain the SED characteristics. This is corroborated by our N-band spectrum showing a crystallinity fraction of more than 50 % for both objects, pointing to a stable environment where dust processing can occur. Surprisingly, the dust surrounding SX Cen is not resolved in the interferometric observations providing an upper limit of 11 mas (or 18 AU at the distance of this object) on the diameter of the dust emission. This confirms the very compact nature of its circumstellar environment. The dust emission around HD 52961 originates from a very small but resolved region, estimated to be ~ 35 mas at 8 micron and ~ 55 mas at 13 micron. These results confirm the disc interpretation of the SED of both stars. In HD 52961, the dust is not homogeneous in its chemical composition: the crystallinity is clearly concentrated in the hotter inner region. Whether this is a result of the formation process of the disc, or due to annealing during the long storage time in the disc is not clear.Comment: 12 pages, 10 figures, accepted for publication in A &

    Mid-infrared interferometric variability of DG Tau: implications for the inner-disk structure

    Get PDF
    Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 Ό\mum silicate feature from emission to absorption temporarily. Aims. We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results. The inner disk (r<1-3 au) spectra exhibit a 10 Ό\mum absorption feature related to amorphous silicate grains. The outer disk (r>1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions. For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk.Comment: 16 pages, 13 figure

    Exploring the impact of social network change:Experiences of older adults ageing in place

    Get PDF
    Social networks are sources of support and contribute to the well-being of older adults who are ageing in place. As social networks change, especially when accompanied by health decline, older adults' sources of support change and their well-being is challenged. Previous studies predominantly used quantitative measures to examine how older adults' social networks change. Alternatively, this study explores the impact of changing social networks on older adults' lives by examining their personal experiences. We held four focus groups, two with a total of 14 older adults who are ageing in place and receiving home care and two with a total of 20 home-care nurses from different regions and organisations in the Netherlands. Subsequently, an expert team of home-care professionals and managers discussed and verified the results. Procedures for grounded theory building were used for analysis. We revealed four themes of high-impact experiences: (a) struggling with illness/death of the spouse; (b) working out a changing relationship with (grand)children; (c) regretting the loss of people they have known for so long and (d) feeling dependent and stressed when helpers enter the network. Also, network dynamics were found to follow three consecutive stages: (a) awareness of social network change; (b) surprise when social network change actually occurs and (c) acceptance and adjusting to new circumstances. Together, the four themes of experiences and three stages of network change form an integrative model of the role of social network dynamics for older adults' lives when ageing in place

    The effect of compliance with a perioperative goal-directed therapy protocol on outcomes after high-risk surgery:a before-after study

    Get PDF
    Perioperative goal-directed therapy is considered to improve patient outcomes after high-risk surgery. The association of compliance with perioperative goal-directed therapy protocols and postoperative outcomes is unclear. The purpose of this study is to determine the effect of protocol compliance on postoperative outcomes following high-risk surgery, after implementation of a perioperative goal-directed therapy protocol. Through a before-after study design, patients undergoing elective high-risk surgery before (before-group) and after implementation of a perioperative goal-directed therapy protocol (after-group) were included. Perioperative goal-directed therapy in the after-group consisted of optimized stroke volume variation or stroke volume index and optimized cardiac index. Additionally, the association of protocol compliance with postoperative complications when using perioperative goal-directed therapy was assessed. High protocol compliance was defined as >= 85% of the procedure time spent within the individual targets. The difference in complications during the first 30 postoperative days before and after implementation of the protocol was assessed. In the before-group, 214 patients were included and 193 patients in the after-group. The number of complications was higher in the before-group compared to the after-group (n = 414 vs. 282; p = 0.031). In the after-group, patients with high protocol compliance for stroke volume variation or stroke volume index had less complications compared to patients with low protocol compliance for stroke volume variation or stroke volume index (n = 187 vs. 90; p = 0.01). Protocol compliance by the attending clinicians is essential and should be monitored to facilitate an improvement in postoperative outcomes desired by the implementation of perioperative goal-directed therapy protocols

    Circumstellar disks in binary star systems

    Full text link
    In this paper we study the evolution of viscous and radiative circumstellar disks under the influence of a companion star. We focus on the eccentric {\gamma} Cephei and {\alpha} Centauri system as examples and compare the disk quantities such as disk eccentricity and precession rate to previous isothermal simulations. We perform two-dimensional hydrodynamical simulations of the binary star systems under the assumption of coplanarity of the disk, host star and binary companion. We use the grid-based, staggered mesh code FARGO with an additional energy equation to which we added radiative cooling based on opacity tables. The eccentric binary companion perturbs the disk around the primary star periodically. Upon passing periastron spirals arms are induced that wind from the outer disk towards the star. In isothermal simulations this results in disk eccentricities up to {\epsilon}_disk ~ 0.2, but in more realistic radiative models we obtain much smaller eccentricities of about {\epsilon}_disk ~ 0.04 - 0.06 with no real precession. Models with varying viscosity and disk mass indicate show that disks with less mass have lower temperatures and higher disk eccentricity. The rather large high disk eccentricities, as indicated in previous isothermal disk simulations, implied a more difficult planet formation in the {\gamma} Cephei system due to the enhanced collision velocities of planetesimals. We have shown that under more realistic conditions with radiative cooling the disk become less eccentric and thus planet formation may be made easier. However, we estimate that the viscosity in the disk has to very small, with {\alpha} \lesssim 0.001, because otherwise the disk's lifetime will be too short to allow planet formation to occur along the core instability scenario. We estimate that the periodic heating of the disk in eccentric binaries will be observable in the mid-IR regime.Comment: 12 pages, 15 figures, accepted for publication in A&
    • 

    corecore