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ABSTRACT

We model the 10 µm absorption spectra of nonspherical particles composed of amorphous silicate. We consider two classes of particles, compact
ones and fractal aggregates composed of homogeneous spheres. For the compact particles we consider Gaussian random spheres with various
degrees of non-sphericity. For the fractal aggregates we compute the absorption spectra for various fractal dimensions. The 10 µm spectra
are computed for ensembles of these particles in random orientation using the well-known Discrete Dipole Approximation. We compare our
results to spectra obtained when using volume equivalent homogeneous spheres and to those computed using a porous sphere approximation.
We conclude that, in general, nonspherical particles show a spectral signature that is similar to that of homogeneous spheres with a smaller
material volume. This effect is overestimated when approximating the particles by porous spheres with the same volume filling fraction.
For aggregates with fractal dimensions typically predicted for cosmic dust, we show that the spectral signature characteristic of very small
homogeneous spheres (with a volume equivalent radius rV � 0.5 µm) can be detected even in very large particles. We conclude that particle
sizes are underestimated when using homogeneous spheres to model the emission spectra of astronomical sources. In contrast, the particle sizes
are severely overestimated when using equivalent porous spheres to fit observations of 10 µm silicate emission.

Key words. infrared: general – stars: circumstellar matter – stars: planetary systems: protoplanetary disks

1. Introduction

The interpretation of absorption and emission spectra observed
from astronomical objects requires knowledge of the absorp-
tion cross section as a function of the dust grain characteristics,
such as size, shape and composition. Usually the absorption
spectra are modeled using homogeneous spherical particles for
which calculations can easily be done using Mie theory (Mie
1908). Although cosmic dust grains are in general not homo-
geneous spheres, in some cases Mie theory calculations can
reproduce the observations quite accurately (see e.g. Hansen &
Hovenier 1974; Kemper et al. 2004). However, in other cases
one has to find a way of modeling the effects of particle shape
in order to reproduce observations or laboratory measurements
(see e.g. Mishchenko et al. 2000). It is therefore important to
know the effects of the adopted particle shape model on the
derived dust parameters, such as the particle size and structure
(see e.g. Fabian et al. 2001; Min et al. 2003, 2005a).

From different formation mechanisms different types of
particles may form. For example, when dust grains form from
direct gas phase condensation, compact particles may be cre-
ated. Alternatively, when dust grains stick together to form
larger particles, complex aggregated structures may be formed.
We study particles in both classes using irregularly shaped
compact particles and fractal aggregates. For the compact

particle shapes we use so-called Gaussian random spheres
(Muinonen et al. 1996) which allows for a varying degree of
irregularity. The fractal aggregates are composed of homoge-
neous spheres and are constructed using a sequential tunable
particle cluster aggregation method, that allows us to construct
particles with arbitrary values of the fractal dimension.

We concentrate on the effects of particle non-sphericity on
the so-called 10 µm amorphous silicate feature. Amorphous sil-
icate with an olivine-type stoichiometry is one of the most
abundant dust components in various astronomical environ-
ments. We will use this type of amorphous silicate and in the
rest of this paper refer to it as amorphous olivine-type silicate.
The absorption spectra of small amorphous silicate grains dis-
play a characteristic feature peaking around 10 µm. The wave-
length position of this feature is ideal for ground based obser-
vations because of the 10 µm atmospheric window.

The 10 µm absorption spectra are computed using the
Discrete Dipole Approximation (DDA). Hage & Greenberg
(1990) proposed to approximate the optical properties of fluffy
aggregates with those of so-called equivalent porous spheres.
In their method they take a porous sphere with the same vol-
ume filling fraction as the fluffy aggregate and compute the op-
tical properties of this porous sphere using effective medium
theory. Using this approximation they concluded that the spec-
tral signature of fluffy aggregates is similar to that of compact
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spheres with a much smaller volume. We test the validity of this
approach for calculations of fractal aggregates and complex
shaped compact particles by comparing the spectra resulting
from this approximate method with those obtained using DDA
calculations. In addition we compare the spectra obtained with
DDA to those of volume equivalent homogeneous spheres and
analyze the error that is made when employing homogeneous
spheres to fit observations of the emission spectra of nonspher-
ical particles.

The method is briefly outlined in Sect. 2. The particle
shapes are described in Sect. 3. In Sect. 4 we present the re-
sulting 10 µm amorphous silicate spectra. An analysis of our
results and a discussion of the implications on the modeling of
10 µm spectra in astronomical observations is given in Sect. 5.

2. Absorption and emission spectra

The shape of the absorption spectrum of a dust grain, i.e. its
absorption cross section as a function of wavelength, contains
important information about the dust characteristics. This spec-
trum can be observed as absorption against a strong infrared
background, or as thermal emission.

In this paper we consider two measures for the size of a
particle, the volume equivalent radius and the circumscribed
sphere radius. The volume equivalent radius, rV , is defined as
the radius of a sphere with the same material volume as the par-
ticle. For very fluffy particles, i.e. particles with a small space
filling fraction, the volume equivalent radius does not provide
an accurate measure for the actual linear extent of the particle.
For this we define the circumscribed sphere radius, rc, to be the
radius of the smallest sphere centered on the center of mass of
the particle and containing the entire particle. As an important
parameter we consider the ratio of the circumscribed sphere
radius and the volume equivalent radius

γ =
rc

rV
· (1)

This parameter determines how dense the material is packed in
space. A very fluffy aggregate will have a high value of γ while
a very dense particle will have a value of γ close to unity. For a
homogeneous sphere γ = 1.

The mass absorption coefficient, κ, of a dust grain is defined
as its absorption cross section per unit mass

κ =
Cabs

M
· (2)

Here Cabs is the absorption cross section, and M is the mass of
the particle. For grains that are much smaller than the wave-
length of radiation both inside and outside the particle, i.e. in
the Rayleigh domain, the absorption cross section is propor-
tional to the particle material volume. This means that the mass
absorption coefficient of very small particles, which is gen-
erally relatively high, is independent of the particle size. For
compact particles much larger than the wavelength we are in
the geometrical optics domain and the absorption cross section
is proportional to the surface area of the particle. For a compact
particle this implies that the mass absorption coefficient scales
as r−1

V for large values of rV .

In general the optical properties of nonspherical particles
depend on the orientation of the particle with respect to the
incoming electromagnetic field. In the astronomical environ-
ments we are interested in, we are dealing with an ensemble
of dust grains with random orientations. Therefore, in this pa-
per we will always average the absorption cross section over all
particle orientations.

2.1. The discrete dipole approximation

The discrete Dipole Approximation (DDA) proposed by
Purcell & Pennypacker (1973) allows for the computation of
the optical properties of arbitrarily shaped particles. In the
DDA the particle material volume may be divided into small
volume elements. Each of these volume elements is assumed
to interact with the radiation as a single dipole. The interac-
tion of all dipoles with the incoming field and with the field of
all other dipoles is then obtained by solving a 3N × 3N matrix
equation, where N is the number of dipoles used to represent
the particle volume. For a theoretical foundation of the method
in terms of the Maxwell equations see Lakhtakia (1992) and
Lakhtakia & Mulholland (1993). For applications of the DDA
in the Rayleigh limit, i.e. for sizes of the particles as a whole
small compared to the wavelength, see Henning & Stognienko
(1993); Stognienko et al. (1995).

In order for the DDA to be valid, the size of the volume
elements has to be much smaller than the wavelength of radia-
tion both inside and outside the particle, i.e. (see e.g. Draine &
Goodman 1993; Draine & Flatau 1994; Draine 2000),

ka|m| < 1, (3)

where k = 2π/λ is the wavenumber of radiation in vacuum, λ
the wavelength in vacuum, a the size of the volume element,
and m the complex refractive index of the material.

DDA computations for large particles require a large num-
ber of dipoles. Several methods have been suggested to speed
up the computations. The most important one makes use of a
Fast Fourier Transform (FFT) together with a conjugate gradi-
ent solution method (see e.g. Goodman et al. 1991; Hoekstra
et al. 1998). A disadvantage of this method is that all dipoles
have to be located on a rectangular grid, consequently also the
empty, vacuum places on the grid are taken into account in the
computation. This slows down the method for fluffy particles
with a low volume filling fraction. For example, for particles
with a volume filling fraction of 1%, N is increased by a fac-
tor 100. Therefore, we chose for a direct solution method of the
DDA equations. For moderate values of N this allows for rela-
tively fast computations, not only for compact but also for very
fluffy grains. An additional advantage is that we only have to do
the computation for a particle in a fixed orientation once in or-
der to obtain the optical properties of the particle for any other
orientation, whereas the FFT method requires the computation
to be repeated for every orientation. Since the computing time
required for the direct solution method scales as N3, and the
method using FFT scales as N log N, the FFT method becomes
faster when large values of N are needed. Typically, both meth-
ods are equally fast for N ∼ 103 for a particle with a volume
filling fraction of 1%.
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σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7

γ = 1.32 γ = 2.00 γ = 2.64 γ = 3.06

Fig. 1. Pictures of the Gaussian random spheres employed in our calculations. The diameters of the corresponding volume equivalent spheres
are indicated by bars below the particles.

2.2. Porous spheres

Another method that is frequently employed to obtain the ab-
sorption and emission spectra of aggregated particles is that
of approximating the particles by porous spheres (Hage &
Greenberg 1990; Min et al. 2005a; Voshchinnikov et al. 2005).
The parameter γ can be easily transformed to the so-called
porosity factor, P, which is defined as the vacuum fraction of
the volume inside the circumscribing sphere and is given by

P = 1 − r3
V

r3
c
= 1 − 1

γ3
· (4)

Hage & Greenberg (1990) use the porosity factor to describe
the optical properties of fluffy aggregates. In their approach
they take a solid sphere with radius rc and an effective re-
fractive index depending on the porosity factor. In this way a
porous sphere is created with the same volume equivalent ra-
dius as well as the same circumscribing sphere radius as the
original particle. We will refer to these particles as equivalent
porous spheres. To compute the effective refractive index Hage
& Greenberg (1990) apply the Garnett mixing rule (Maxwell
Garnett 1904, also known as the Maxwell-Garnett mixing rule),
taking the material as inclusions in a vacuum matrix. Then
the effective complex refractive index, meff , of a particle with
porosity factor P is given by (Hage & Greenberg 1990)

m2
eff = 1 +

3(1 − P)(m2 − 1)/(m2 + 2)
1 − (1 − P)(m2 − 1)/(m2 + 2)

, (5)

with m the complex refractive index of the material.
The combination of Garnett effective medium approxima-

tion with exact Mie calculations for volume equivalent spheres
will be referred to as the porous sphere approximation through-
out this paper. The validity of this approximation was tested by
Hage & Greenberg (1990) for particles where the volume ele-
ments are much smaller than the wavelength of incident radia-
tion and in addition are randomly distributed over the circum-
scribing sphere volume. They found that in this case, the porous
sphere approximation yields rather accurate results. However,
in realistic aggregates the constituents are not randomly dis-
tributed in space. In contrast, the constituents have to be touch-
ing to form, for example, fractal like structures. We will test the
validity of the porous sphere approximation for computations
of emission spectra of fractal aggregates and complex shaped

compact particles by comparing the spectra resulting from this
approximation with those obtained from DDA computations.

3. Particle shapes

The shape of a dust grain is an important parameter determin-
ing its spectroscopic characteristics. In this paper we distin-
guish between two classes of shapes, aggregates and compact
particles. For the compact particles we use Gaussian random
spheres, while for the aggregates we use fractal aggregates with
varying fractal dimensions.

3.1. Gaussian random spheres

A Gaussian random sphere (Muinonen et al. 1996) is a homo-
geneous sphere the surface of which is distorted according to
a Gaussian random distribution. The distortion of the surface
is parameterized by two shape variables, the standard deviation
of the distance to the center, σ, and the average correlation an-
gle, Γ. Using various values for these two parameters allows us
to construct particles with varying degrees of irregularity. The
number of “hills and valleys” on the surface in a solid angle is
determined by the value of Γ, while σ determines the height of
these hills and valleys. For details see Muinonen et al. (1996).

In Fig. 1 we show pictures of the Gaussian random spheres
used in our computations. We vary the value of σ from 0.1
to 0.7 and fix the value of Γ to 10◦.

3.2. Fractal aggregates

In astronomical environments large grains form by aggregation
of small particles (see e.g. Kempf et al. 1999). Studies on inter-
planetary dust particles from likely cometary origin show that
cometary dust grains are likely to be aggregates. A special class
of aggregates are the so-called fractal aggregates.

A fractal aggregate composed of homogeneous spheres
obeys the scaling law (Filippov et al. 2000)

N = kf

(
Rg

a

)Df

· (6)

Here N is the number of constituents each with radius a; kf is
the fractal prefactor; Df is the fractal dimension, and Rg is the
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radius of gyration defined by

R2
g =

1
N

N∑
i=1

|ri − r0|2 , (7)

r0 =
1
N

N∑
i=1

ri, (8)

where ri is the position of the ith constituent, and r0 is the cen-
ter of mass. The value of the fractal dimension can in theory
vary between the two extremes Df = 1 (a thin, straight chain of
particles) and Df = 3 (a homogeneous sphere).

We use a sequential tunable particle-cluster aggregation
method developed by Filippov et al. (2000) to construct the
fractal aggregates. This method allows us to construct aggre-
gates with arbitrary fractal dimension.

Note that for a fractal aggregate the circumscribed sphere
radius and the volume equivalent radius cannot be the same.
The reason is that the constituents are homogeneous spheres,
therefore they do not allow for a full packing of the volume
of the circumscribed sphere. The maximum packing density of
a collection of spheres with the same radius is π/

√
18 (Hales

1992). This implies that for an aggregate composed of homoge-
neous spheres the minimum value of γ = (

√
18/π)1/3 ≈ 1.105.

The maximum value of γ depends on the number of spheres
that make up the aggregate. The least dense packing is a straight
line of spheres and results in γ = N2/3.

In nature fractal aggregates can grow with a wide range of
fractal dimensions depending on the formation mechanism and
the environment in which they form. In astronomical environ-
ments the fractal dimension can vary between approximately 1
up to almost 3. Almost linear aggregates (Df ≈ 1) might form
when the particles have an electric or magnetic dipole and are
in an external field (Dominik & Nübold 2002; Nübold et al.
2003). In the case that grain growth occurs by coagulation of
aggregates with approximately equal size the resulting aggre-
gates will have a fractal dimension of approximately 1.8 to 2.1
(Kempf et al. 1999). On the other hand, when the growth oc-
curs by adding single monomers to a larger aggregate, aggre-
gates with a fractal dimension of 3 might form (Ball & Witten
1984).

In this paper we consider aggregates composed of homo-
geneous spheres with fractal dimensions ranging from 1.2 up
to 2.8. The radius of the monomers, a, is chosen to be 0.4 µm.
For particles composed of an amorphous silicate, the absolute
value of the refractive index in the 10 µm region reaches val-
ues up to |m| ≈ 2.2 with a corresponding maximum value of
ka|m| = 0.5. Thus, when applying DDA in this spectral region
for the material we consider, each monomer can be represented
by a single dipole (see Eq. (3)). By using several values of kf

we find that the results are not very sensitive to the fractal pref-
actor chosen. For all aggregates we use kf = 2.0. Pictures of
the fractal aggregates we constructed for various numbers of
monomers, and thus for various volume equivalent radii, are
shown in Fig. 2. The bar below the pictures shows the diame-
ter of a volume equivalent sphere. Also denoted are the corre-
sponding values of γ. Thus we find that for a fractal aggregate
with Df = 1.2 and a volume equivalent radius rV = 6 µm, we
have rc = γ rV ≈ 320 µm.

When we consider growth, we do not scale the aggregate
but add more grains to it. This is an important difference with
the Gaussian random spheres, since it implies that aggregates
with different sizes have different shapes. For Gaussian random
spheres the size is changed by scaling the entire grain, which
implies that the shape of the particle is independent of its size.

4. Results

4.1. The 10 µm amorphous silicate feature

The absorption spectrum of silicate particles display a feature
around 10 µm due to the stretching mode of the Si–O bond in
the SiO4 tetrahedra of which silicates are made. Here we will
concentrate on the 10 µm feature of amorphous olivine-type sil-
icate, which is the most important dust constituent in many as-
tronomical environments. The chemical formula of amorphous
olivine-type silicate is Mg2xFe2−2xSiO4, where 0 ≤ x ≥ 1 gives
the iron to magnesium ratio. We use the refractive index as a
function of wavelength as measured by Dorschner et al. (1995),
for olivine with x ≈ 0.5.

The spectral shape and amplitude of the mass absorption
coefficient of particles composed of an amorphous silicate as
a function of wavelength in the 10 µm region is sensitive to
the size and shape of the grains causing it. Computations us-
ing homogeneous spheres show that an increase in particle size
tends to broaden and flatten the 10 µm feature. When Mie the-
ory is employed to compute the emission spectrum, the feature
strength diminishes rapidly when the grain size is increased.
Using the porous sphere approximation Hage & Greenberg
(1990) have shown that this change in feature strength and
shape is strongly affected by the porosity factor of the particle.
Using approximate methods to compute the emission spectra
they showed that the spectra of large, porous spheres resemble
those of small compact ones.

4.2. Fractal aggregates versus Gaussian random
spheres

The solid curves in Fig. 3 display the mass absorption coeffi-
cients as a function of wavelength for the various Gaussian ran-
dom spheres (Fig. 1), and different particle sizes. Also shown in
this figure is the mass absorption coefficient of volume equiv-
alent homogeneous spherical particles (dotted lines), and the
mass absorption coefficient of equivalent porous spheres with
porosity factor given by Eq. (4) (dashed lines). It is clear that
in all cases an increase of the particle size beyond 1 µm, leads
to a decrease of the strength of the 10 µm feature. Also, for the
grains with a volume equivalent radius larger than 1 µm, in-
creasing the value of σ increases the peak value. The reason
is probably that the bumps and spikes sticking out of the parti-
cle for high values of σ (see Fig. 1) roughly interact with the
radiation like small separate particles. In general, the feature
as computed using volume equivalent homogeneous spheres is
narrower and weaker. Also, it is clear that the feature computed
using the porous sphere approximation is in general narrower
and stronger, thus resembling the feature of much smaller
particles. When for homogeneous spheres the grain size is
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Fig. 2. Pictures of the fractal aggregates we used in our calculations. Indicated by the bar below the aggregates is the diameter of the corre-
sponding volume equivalent sphere.

increased, the feature weakens and flattens, i.e. it becomes
more flat-topped. For the Gaussian random spheres the feature
also weakens when the grain size is increased, however, the
shape of the feature still shows a more rounded top.

By considering the spectra of different realizations of the
Gaussian random spheres with the same shape parameters σ
and Γ but different seeds for the random number generator we
find that the differences in the absorption spectra are small and
that all trends are conserved (not shown in the figure).

Plotted by the solid curves in Fig. 4 is the mass absorp-
tion coefficient as a function of wavelength for the fractal ag-
gregates with different fractal dimensions and aggregate sizes
as shown in Fig. 2. It is clear from this figure that the 10 µm
feature of fractal aggregates with a low value of the fractal
dimension in general has a much weaker dependence on the
particle size than that of aggregates with a higher value of
the fractal dimension. For a fractal aggregate with Df = 1.2
the feature strength is only very slightly decreased even if the
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Fig. 3. The mass absorption coefficient, κ, averaged over all particle orientations as a function of wavelength for Gaussian Random Spheres
composed of amorphous olivine-type silicate (solid lines) with various values of the shape parameter σ and grain sizes rV . Also shown are the
spectra for volume equivalent homogeneous spheres (dotted lines) and for equivalent porous spheres with a porosity factor given by Eq. (4)
(dashed lines). Particle size is increased from top to bottom, while the particle non-sphericity is increased from left to right. Note that in
accordance with the shape of the particles, the porosity of the grains increases from left to right. The refractive index of amorphous olivine-type
silicate as a function of wavelength used in the calculations was taken from Dorschner et al. (1995).

volume equivalent radius is increased from rV = 0.4 µm to
6 µm, in which case rc = 320 µm. The reason is probably that
the constituents in fractal aggregates with low fractal dimen-
sions are separated by large distances. This reduces the inter-
action between the different volume elements within the ag-
gregate. Thus, the monomers interact, to a certain extent, as if
they were separate small particles, displaying a feature typi-
cal for small dust grains. We have to note here that there is a
difference between the spectra for the separate constituent (up-
per panels) and the fully grown aggregates (shown in the lower
panels) even for the most fluffy aggregates. This means that
even in the most extreme case Df = 1.2 there has to be interac-
tion between the constituents of the aggregate. Thus, the effects
of aggregation on the spectral signature will always be visible,
even in the case that the aggregates form almost linear chains.
In general, when increasing the fractal dimension, the spectral
signature of the monomers becomes more apparent in the spec-
trum of the aggregate. Comparing the resulting spectra for the
fractal aggregates with homogeneous spheres we see that, as

with the Gaussian random spheres, the features for the larger
fractal aggregates also have a generally more rounded shape.
The spectra of very compact aggregates (Df = 2.8) show virtu-
ally no differences with those of homogeneous spheres.

Also for the fractal aggregates we considered different re-
alizations of the particles with the same shape parameters but
different seeds of the random number generator and found that
the differences in the spectra obtained are negligible.

Comparing the features obtained using DDA calculations
for fractal aggregates with those obtained using the equiva-
lent porous spheres (dashed curves in Fig. 4) it is clear that
the effect of fluffiness is overestimated using porous spheres.
The features obtained using this approximation are, in general,
much sharper, stronger and narrower than those obtained using
DDA calculations, thus resembling more the feature of the con-
stituents of the aggregates. The effective medium theory used
to compute the spectra of porous spheres assumes that the con-
stituent particles of the aggregate are distributed randomly over
the entire volume of the circumscribing sphere. As mentioned
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Fig. 4. Same as Fig. 3 but for fractal aggregates with various values of the fractal dimension (solid lines). The increase in particle size for
aggregates implies an increase of the number of constituents (see Fig. 2). Note that in this figure the porosity increases not only from left to
right but also from top to bottom (see also Fig. 2).

before, this is in sharp contrast with realistic aggregates where
the constituents have to be in contact, thus increasing the in-
teractions between the aggregate constituents. In this way it is
easy to understand that the porous sphere approximation un-
derestimates the effects of grain growth for fluffy aggregates.
Our detailed calculations qualitatively confirm the conclusion
by Hage & Greenberg (1990) that by increasing particle fluffi-
ness the spectral signature of the constituent particles of the
aggregate become more visible. However, we also have to con-
clude that the porous sphere approximation severely overesti-
mates this effect for realistic aggregates.

5. Implications for grain growth and dust modeling

In this section we will quantify the effects of the assumption
of particle shape on the derived grain size and dust mass when
fitting observed infrared 10 µm spectra. We do this by taking
the 10 µm spectra presented in the previous section and fit-
ting these with the 10 µm spectrum of an ensemble of homo-
geneous spheres with radius rf and total mass Mf . In the same
way we fitted the spectra using an ensemble of porous spheres,

applying the porous sphere approximation, with volume equiv-
alent radius rp and total mass Mp. The porosity of these spheres
was taken to be equal to the porosity of the particle whose spec-
trum was fitted. The fits using homogeneous spheres showed
that, in general, the spectral shapes shown in Figs. 4 and 3 are
very well reproduced using homogeneous spheres. In almost
all cases the fitted curves deviate less than the linewidth from
the curves shown in Figs. 3 and 4. Only for the large (4 and
6 µm) Gaussian random spheres with high values of σ and the
large fractal aggregates with intermediate values of Df the fits
are of a slightly lesser quality. In these cases, the nonspherical
particles display a feature with low contrast combined with a
relatively rounded top. This cannot be reproduced accurately
by using homogeneous spherical particles. The fits using the
porous sphere approximation showed also quite good agree-
ment. However, for the large (rV > 2 µm), very fluffy aggre-
gates (Df = 1.2 and 1.8), the agreement is much less satis-
fying. The fact that most spectra are fitted very well implies
that it is difficult to determine particles shapes from the shape
of the 10 µm feature alone. Thus, one has to resort to other
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Table 1. The radius of the best fit homogeneous sphere, rf (left columns), and the radius of the best fit porous sphere, rp (right columns), in µm
for the absorption spectra of the Gaussian random spheres and the fractal aggregates.

Homogeneous spheres Porous sphere approximation
Gaussian random spheres Fractal aggregates Gaussian random spheres Fractal aggregates
σ σ σ σ Df Df Df Df σ σ σ σ Df Df Df Df

0.1 0.3 0.5 0.7 2.8 2.4 1.8 1.2 0.1 0.3 0.5 0.7 2.8 2.4 1.8 1.2
rV = 0.4 µm 0.8 1.2 1.3 1.3 0.4 0.4 0.4 0.4 1.0 2.9 5.8 8.0 0.4 0.4 0.4 0.4
rV = 1.0 µm 1.2 1.4 1.5 1.5 1.2 1.1 1.3 1.3 1.2 4.5 8.6 11.1 2.1 2.1 3.8 12.8
rV = 2.0 µm 2.0 1.9 1.8 1.7 2.0 1.8 1.5 1.4 3.9 9.9 15.8 17.9 5.1 5.8 13.0 122.2
rV = 4.0 µm 3.7 3.1 2.5 2.1 3.8 2.2 1.6 1.4 9.2 21.6 30.1 31.2 11.8 11.6 36.9 1101.7
rV = 6.0 µm 5.1 3.8 3.1 2.6 5.8 2.4 1.7 1.5 13.6 30.4 41.6 40.1 14.6 16.4 76.2 4391.8

Table 2. The mass scaling factor of the best fit homogeneous sphere, Mf (left columns), and of the best fit porous sphere, Mp (right columns),
for the absorption spectra of the Gaussian random spheres and the fractal aggregates.

Homogeneous spheres Porous sphere approximation
Gaussian random spheres Fractal aggregates Gaussian random spheres Fractal aggregates
σ σ σ σ Df Df Df Df σ σ σ σ Df Df Df Df

0.1 0.3 0.5 0.7 2.8 2.4 1.8 1.2 0.1 0.3 0.5 0.7 2.8 2.4 1.8 1.2
rV = 0.4 µm 1.0 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.4 1.7 1.7 1.0 1.0 1.0 1.0
rV = 1.0 µm 1.0 1.1 1.2 1.2 1.0 1.0 1.0 1.0 1.2 1.7 1.9 1.9 1.2 1.2 1.4 1.6
rV = 2.0 µm 1.0 1.0 1.1 1.1 1.0 1.0 1.0 1.0 1.5 2.1 2.2 2.1 1.7 1.6 1.7 1.8
rV = 4.0 µm 1.0 0.9 0.8 0.8 1.0 0.8 0.8 1.0 1.7 2.4 2.3 2.1 1.9 1.7 1.7 1.8
rV = 6.0 µm 0.9 0.8 0.7 0.7 1.0 0.7 0.8 1.0 1.7 2.2 2.2 1.9 1.7 1.6 1.8 1.9

observables, like for example the degree of linear polarization
in the visible part of the spectrum, to obtain information on the
particle shape (see e.g. Min et al. 2005b).

The resulting values of the best fitting rf and rp for the dif-
ferent values of σ, Df , and rV are presented in Table 1 and the
corresponding values of Mf and Mp in Table 2. In Fig. 5 we
plot rf as a function of rV for all particle shapes we consid-
ered. It is clear that in almost all cases the size of the parti-
cles is underestimated when fitting the 10 µm absorption spec-
trum using homogeneous spheres. This is a consequence of the
fact that when using homogeneous spheres the particle mass
is concentrated in a much smaller volume than when realis-
tically shaped particles are used. This increases the interac-
tions between the volume elements of the particle, leading to
a stronger effect of particle size on the 10 µm feature when us-
ing homogeneous spheres. In contrast, when using equivalent
porous spheres to fit the spectra, the particle size is severely
overestimated. This in turn is caused by the fact that when us-
ing equivalent porous spheres, the mass is distributed over a
much larger volume than when using realistic particle shapes,
thus leading to a much weaker effect of particle size. For the
fractal aggregates with very low fractal dimension these ef-
fects are most extreme. Extrapolation of the curves in Fig. 5
beyond 6 µm for fractal aggregates with low fractal dimension
suggests that even for very large aggregates the 10 µm feature
will display a signature typical for relatively small homoge-
neous spheres. The mass estimate we get from the fit using
homogeneous spheres is in most cases close to the real mass
(Mf is relatively close to unity). For the porous spheres, this
is slightly worse (Mp is close to 2 in many cases), but still not
very extreme. This is a consequence of the fact that the particles
we consider are not extremely large. For very large particles,

rV � 20 µm, the error in the mass estimate will be much larger.
For the intermediate fractal dimensions and for the irregularly
shaped compact particles we make an error in the mass estimate
of 30% for the largest values of rV when using homogeneous
spheres to fit the spectra.

In several studies of the 10 µm spectra of circumstellar
disks (see e.g. Bouwman et al. 2001; Honda et al. 2004;
van Boekel et al. 2004; van Boekel et al. 2005) particle size
effects have been modeled by using a typical size for the large
particles of rV = 1.5 or 2.0 µm. The spectral signature of par-
ticles with these sizes is reported in these spectra. Since this
grain size is significantly larger than that derived for the dust in
the interstellar medium (Kemper et al. 2004) this is interpreted
as grain growth. In these studies the particles are considered to
be compact, and in most cases homogeneous spheres. However,
models of grain growth in astronomical environments show
that aggregates with a wide range of fractal dimensions can
be formed. As we showed, in general, fractal aggregates and
irregularly shaped compact particles display the spectral signa-
ture of smaller homogeneous spheres. Thus, when interpreting
emission spectra of astronomical objects using compact parti-
cles, the size of the emitting grains is generally underestimated.
A good estimate of the real particle shape or fractal dimension
may be available from, for example, theoretical arguments. In
that case the rf derived from fitting 10 µm spectra of astronom-
ical sources using homogeneous spheres can be used, in com-
bination with Table 1, to estimate the volume equivalent radius
of the particles, rV .

For example, say that we derive from the shape of an ob-
served 10 µm feature using homogeneous spheres that the typ-
ical particle size rf = 1.7 µm. Furthermore, we expect that
the grains present in the environment we are observing are
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Fig. 5. The best fit size of a homogeneous sphere to the 10 µm amor-
phous silicate spectra, rf , of particles with different shapes as a func-
tion of the volume equivalent radius of the particles, rV . The top panel
is for the Gaussian random spheres with different values of σ, while
the lower panel is for the fractal aggregates with different fractal di-
mensions, Df . The values of σ and Df are indicated at the right side of
the curves. The dotted lines represent the case in which the fitted size
and the real size are equal, i.e. rV = rf .

fractal aggregates with Df ≈ 1.8. We can then estimate from
Table 1 that the true volume equivalent radius of the grains is
rV ≈ 6 µm. The linear extent of the aggregates can be estimated
using γ to be rc ≈ 36 µm (see Fig. 2). In addition, from Table 2
it can be found that the derived dust mass is a likely underesti-
mate of the real dust mass by roughly 20%.

Since the curves for the low fractal dimension are very flat
for rV � 1 µm, the estimate of rV strongly depends on the
accuracy of rf . Furthermore, the fractal dimension that is em-
ployed can change the estimated value of rV from a given value
of rf significantly. Coagulation calculations and experiments
play a crucial role in determining the possible shapes and frac-
tal dimensions that can be formed under different conditions.
Therefore, these calculations and experiments are very impor-
tant for a correct analysis of 10 µm spectra.

Models of grain growth predict that, for example, in pro-
toplanetary disks, grain growth rapidly removes small grains
(Dullemond & Dominik 2005). When homogeneous spheres
are used to compute the 10 µm spectra of amorphous silicate
particles, already for a grain with a 4 µm radius the feature
is flattened so much that it becomes very hard to detect. This
contradicts observations of protoplanetary disks where promi-
nent 10 µm features are found (see e.g. Bouwman et al. 2001).
Dullemond & Dominik (2005) propose a possible explanation
for this discrepancy by considering destructive particle colli-
sions. This causes an equilibrium situation with a significant
amount of small grains. In addition to this, we have shown that
when the particles grow as fluffy aggregates, the 10 µm feature
will be visible for much larger particle sizes.

A flattened, square 10 µm feature as seen in the absorption
spectra of homogeneous spheres is observed in the 10 µm emis-
sion spectra of some protoplanetary disks (see e.g Bouwman
et al. 2001). Since the features of very irregularly shaped par-
ticles or fluffy aggregates as presented in Figs. 3 and 4 show
a somewhat more rounded top, one could argue that this sug-
gests that the particles in these protoplanetary disks may be rel-
atively compact. However, a firmer analysis of the observations
is needed in order to confirm this.

6. Conclusions

We have presented calculations of the 10 µm absorption spec-
tra of complex shaped compact particles and fractal aggregates
with various fractal dimensions. We have compared the result-
ing spectra and studied the dependence of the spectral signature
on the size of the particles. It is clear that the size dependence
of the spectral signature of fractal aggregates depends strongly
on the fractal dimension of the aggregate. For very fluffy ag-
gregates, i.e. low fractal dimensions, the spectral signature of
very large aggregates still looks like that of very small com-
pact particles. We have investigated if the absorption spectra of
complex particles can be approximated by those obtained using
volume equivalent porous spheres with the same volume filling
factor as proposed by Hage & Greenberg (1990). We conclude
that the interactions between the volume elements making up
the particle are underestimated when we use this porous sphere
approximation, applying Garnett effective medium theory, thus
underestimating the effects of particle size.

For the complex shaped compact particles the size depen-
dence of the spectral signature also depends on the actual shape
of the emitting grains. In general we find that the strength of the
10 µm absorption spectrum of a nonspherical particle is equal
to that of a smaller homogeneous spherical particle.

Observed 10 µm emission and absorption spectra are of-
ten interpreted using compact, and in most cases homogeneous
spherical, particles. We show that this leads to an underestimate
of the actual grain size when the emitting grains are either non-
spherical compact particles or fractal aggregates. We present a
way of estimating the true particle size and mass, when an es-
timate of the shape or fractal dimension of the particles can be
provided. We also show that when equivalent porous spheres
are used to fit observed 10 µm spectra, the particle sizes are
severely overestimated.

Analysis of the 10 µm emission spectra of circumstellar
disks show that the spectral signature of homogeneous spher-
ical particles with radii of approximately 2 µm is present in
these disks. When the emitting grains are actually, for in-
stance, fractal aggregates with a fractal dimension of approxi-
mately 1.8 this implies a volume equivalent radius of these ag-
gregates of at least rV = 6 µm. The radius of the circumscribed
sphere is then even of the order of rc ≈ 36 µm. In environments
where aggregates with even lower fractal dimensions can grow,
grain sizes will be even more severely underestimated when us-
ing compact particles.
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