14 research outputs found

    High Rates of Asymptomatic Mycoplasma genitalium Infections With High Proportion of Genotypic Resistance to First-Line Macrolide Treatment Among Men Who Have Sex With Men Enrolled in the Zurich Primary HIV Infection Study

    Full text link
    Background Mycoplasma genitalium (Mg) is an emerging sexually transmitted pathogen among men who have sex with men (MSM). Resistance to recommended antimicrobial agents are of public health concern. Few data exist on Mg infections in MSM diagnosed with human immunodeficiency virus (HIV) during primary HIV infection. Methods Participants of the Zurich Primary HIV Study (ClinicalTrials.gov Identifier NCT00537966) were systematically offered screening for sexually transmitted infections (STIs) between April 2019 and September 2020. Screening was performed using an in-house polymerase chain reaction panel comprising Mg including genotypic resistance testing for macrolides and quinolones, Chlamydia trachomatis including serovars L1-L3, Neisseria gonorrhoeae, Treponema pallidum, and Hemophilus ducreyi. Results We screened 148 of 266 (55.6%) participants, with an overall total of 415 follow-up visits. Ninety-one percent were MSM. The incidence rate for all STIs was 47.0 (95% confidence interval [CI], 32.2-68.6) per 100 person-years. Mycoplasma genitalium was the most frequently detected pathogen: 30 participants (20%) presented with at least 1 Mg infection, corresponding to a period prevalence of 20.3% and incidence rate of 19.5 Mg infections (95% CI, 11.8-32.4). Most Mg infections (93%) were asymptomatic, and 9 (30%) participants showed spontaneous clearance. We detected high rates of antibiotic resistance: 73.3% to macrolides, 3.3% to quinolones, and 13.3% resistance to both antibiotics. Conclusions The high prevalence of mostly asymptomatic Mg infections and high rate of spontaneous clearance support cautious initiation for treatment. The high proportion of macrolide-resistant strains suggests that a genotypic determination of resistance should be standard of care. Moxifloxacin should be the preferred treatment option for symptomatic Mg infections among MSM if resistance testing is unavailable

    Identifying the science and technology dimensions of emerging public policy issues through horizon scanning

    Get PDF
    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security

    Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses.

    Get PDF
    Death receptors (DRs) of the TNFR superfamily contribute to antiviral immunity by promoting apoptosis and regulating immune homeostasis during infection, and viral inhibition of DR signaling can alter immune defenses. Here we identify the human cytomegalovirus (HCMV) UL141 glycoprotein as necessary and sufficient to restrict TRAIL DR function. Despite showing no primary sequence homology to TNF family cytokines, UL141 binds the ectodomains of both human TRAIL DRs with affinities comparable to the natural ligand TRAIL. UL141 binding promotes intracellular retention of the DRs, thus protecting virus infected cells from TRAIL and TRAIL-dependent NK cell-mediated killing. The identification of UL141 as a herpesvirus modulator of the TRAIL DRs strongly implicates this pathway as a regulator of host defense to HCMV and highlights UL141 as a pleiotropic inhibitor of NK cell effector function

    Allosteric Regulation of the Ubiquitin:NIK and Ubiquitin:TRAF3 E3 Ligases by the Lymphotoxin-β Receptor*

    No full text
    The lymphotoxin-β receptor (LTβR) activates the NF-κB2 transcription factors, p100 and RelB, by regulating the NF-κB-inducing kinase (NIK). Constitutive proteosomal degradation of NIK limits NF-κB activation in unstimulated cells by the ubiquitin:NIK E3 ligase comprised of subunits TNFR-associated factors (TRAF)3, TRAF2, and cellular inhibitor of apoptosis (cIAP). However, the mechanism releasing NIK from constitutive degradation remains unclear. We found that insertion of a charge-repulsion mutation in the receptor-binding crevice of TRAF3 ablated binding of both LTβR and NIK suggesting a common recognition site. A homologous mutation in TRAF2 inhibited cIAP interaction and blocked NIK degradation. Furthermore, the recruitment of TRAF3 and TRAF2 to the ligated LTβR competitively displaced NIK from TRAF3. Ligated LTβR complexed with TRAF3 and TRAF2 redirected the specificity of the ubiquitin ligase reaction to polyubiquitinate TRAF3 and TRAF2, leading to their proteosomal degradation. Stimulus-dependent degradation of TRAF3 required the RING domain of TRAF2, but not of TRAF3, implicating TRAF2 as a key E3 ligase in TRAF turnover. The combined action of competitive displacement of NIK and TRAF degradation halted NIK turnover, and promoted its association with IKKα and signal transmission. These results indicate the LTβR modifies the ubiquitin:NIK E3 ligase, and also acts as an allosteric regulator of the ubiquitin:TRAF E3 ligase

    Quantification of the spread of SARS-CoV-2 variant B.1.1.7 in Switzerland

    No full text
    BACKGROUND In December 2020, the United Kingdom (UK) reported a SARS-CoV-2 Variant of Concern (VoC) which is now named B.1.1.7. Based on initial data from the UK and later data from other countries, this variant was estimated to have a transmission fitness advantage of around 40-80 % (Volz et al., 2021; Leung et al., 2021; Davies et al., 2021). AIM This study aims to estimate the transmission fitness advantage and the effective reproductive number of B.1.1.7 through time based on data from Switzerland. METHODS We generated whole genome sequences from 11.8 % of all confirmed SARS-CoV-2 cases in Switzerland between 14 December 2020 and 11 March 2021. Based on these data, we determine the daily frequency of the B.1.1.7 variant and quantify the variant's transmission fitness advantage on a national and a regional scale. RESULTS We estimate B.1.1.7 had a transmission fitness advantage of 43-52 % compared to the other variants circulating in Switzerland during the study period. Further, we estimate B.1.1.7 had a reproductive number above 1 from 01 January 2021 until the end of the study period, compared to below 1 for the other variants. Specifically, we estimate the reproductive number for B.1.1.7 was 1.24 [1.07-1.41] from 01 January until 17 January 2021 and 1.18 [1.06-1.30] from 18 January until 01 March 2021 based on the whole genome sequencing data. From 10 March to 16 March 2021, once B.1.1.7 was dominant, we estimate the reproductive number was 1.14 [1.00-1.26] based on all confirmed cases. For reference, Switzerland applied more non-pharmaceutical interventions to combat SARS-CoV-2 on 18 January 2021 and lifted some measures again on 01 March 2021. CONCLUSION The observed increase in B.1.1.7 frequency in Switzerland during the study period is as expected based on observations in the UK. In absolute numbers, B.1.1.7 increased exponentially with an estimated doubling time of around 2-3.5 weeks. To monitor the ongoing spread of B.1.1.7, our plots are available online

    Quantification of the spread of SARS-CoV-2 variant B.1.1.7 in Switzerland

    Get PDF
    Background: In December 2020, the United Kingdom (UK) reported a SARS-CoV-2 Variant of Concern (VoC) which is now named B.1.1.7. Based on initial data from the UK and later data from other countries, this variant was estimated to have a transmission fitness advantage of around 40–80 % (Volz et al., 2021; Leung et al., 2021; Davies et al., 2021). Aim: This study aims to estimate the transmission fitness advantage and the effective reproductive number of B.1.1.7 through time based on data from Switzerland. Methods: We generated whole genome sequences from 11.8 % of all confirmed SARS-CoV-2 cases in Switzerland between 14 December 2020 and 11 March 2021. Based on these data, we determine the daily frequency of the B.1.1.7 variant and quantify the variant's transmission fitness advantage on a national and a regional scale. Results: We estimate B.1.1.7 had a transmission fitness advantage of 43–52 % compared to the other variants circulating in Switzerland during the study period. Further, we estimate B.1.1.7 had a reproductive number above 1 from 01 January 2021 until the end of the study period, compared to below 1 for the other variants. Specifically, we estimate the reproductive number for B.1.1.7 was 1.24 [1.07–1.41] from 01 January until 17 January 2021 and 1.18 [1.06–1.30] from 18 January until 01 March 2021 based on the whole genome sequencing data. From 10 March to 16 March 2021, once B.1.1.7 was dominant, we estimate the reproductive number was 1.14 [1.00–1.26] based on all confirmed cases. For reference, Switzerland applied more non-pharmaceutical interventions to combat SARS-CoV-2 on 18 January 2021 and lifted some measures again on 01 March 2021. Conclusion: The observed increase in B.1.1.7 frequency in Switzerland during the study period is as expected based on observations in the UK. In absolute numbers, B.1.1.7 increased exponentially with an estimated doubling time of around 2–3.5 weeks. To monitor the ongoing spread of B.1.1.7, our plots are available online.ISSN:1878-0067ISSN:1755-436
    corecore