1,822 research outputs found

    Chiral constituent quark model study of the process γpηp\gamma p \to \eta p

    Full text link
    A constituent quark model is developed for the reaction, allowing us to investigate all available data for differential cross sections as well as single polarization asymmetries (beam and target) by including {\it all} of the PDG, one to four star, nucleon resonances (S11S_{11}, P11P_{11}, P13P_{13}, D13D_{13}, D15D_{15}, F15F_{15}, F17F_{17}, G17G_{17}, G19G_{19}, H19H_{19}, I1,11I_{1,11}, and K1,13K_{1,13}). Issues related to the missing resonances are also briefly discussed by examining possible contributions from several new resonances (S11S_{11}, P11P_{11}, P13P_{13}, D13D_{13}, D15 D_{15}, and H1,11H_{1,11}).Comment: 3 pages,2 figures, presented in NSTAR2007, Bonn, Germany,5 - 8 September 200

    Resting natural killer cell homeostasis relies on tryptophan/NAD+^{+} metabolism and HIF-1α

    Full text link
    Natural killer (NK) cells are forced to cope with different oxygen environments even under resting conditions. The adaptation to low oxygen is regulated by oxygen-sensitive transcription factors, the hypoxia-inducible factors (HIFs). The function of HIFs for NK cell activation and metabolic rewiring remains controversial. Activated NK cells are predominantly glycolytic, but the metabolic programs that ensure the maintenance of resting NK cells are enigmatic. By combining in situ metabolomic and transcriptomic analyses in resting murine NK cells, our study defines HIF-1α as a regulator of tryptophan metabolism and cellular nicotinamide adenine dinucleotide (NAD+^{+} ) levels. The HIF-1α/NAD+^{+} axis prevents ROS production during oxidative phosphorylation (OxPhos) and thereby blocks DNA damage and NK cell apoptosis under steady-state conditions. In contrast, in activated NK cells under hypoxia, HIF-1α is required for glycolysis, and forced HIF-1α expression boosts glycolysis and NK cell performance in vitro and in vivo. Our data highlight two distinct pathways by which HIF-1α interferes with NK cell metabolism. While HIF-1α-driven glycolysis is essential for NK cell activation, resting NK cell homeostasis relies on HIF-1α-dependent tryptophan/NAD+^{+} metabolism

    Bacillus anthracis edema factor substrate specificity: evidence for new modes of action

    Get PDF
    Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed

    Harmonic analysis and hypercomplex function theory in co-dimension one

    Get PDF
    Fundamentals of a function theory in co-dimension one for Clifford algebra valued functions over ℝn+1 are considered. Special attention is given to their origins in analytic properties of holomorphic functions of one and, by some duality reasons, also of several complex variables. Due to algebraic peculiarities caused by non-commutativity of the Clifford product, generalized holomorphic functions are characterized by two different but equivalent properties: on one side by local derivability (existence of a well defined derivative related to co-dimension one) and on the other side by differentiability (existence of a local approximation by linear mappings related to dimension one). As important applications, sequences of harmonic Appell polynomials are considered whose definition and explicit analytic representations rely essentially on both dual approaches.The work of the first, second and fourth authors was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (“FCT-Fundação para a Ciência e Tecnologia”), within project PEst-OE/MAT/UI4106/2013. The work of the second author was supported by Portuguese funds through the CMAT - Centre of Mathematics and FCT within the Project UID/MAT/00013/2013

    Knowledge Sharing and Knowledge Management System Avoidance: The Role of Knowledge Type and the Social Network in Bypassing an Organizational Knowledge Management System

    Get PDF
    Knowledge sharing is a difficult task for most organizations, and there are many reasons for this. In this article, we propose that the nature of the knowledge shared and an individual\u27s social network influence employees to find more value in person-to-person knowledge sharing, which could lead them to bypass the codified knowledge provided by a knowledge management system (KMS). We surveyed employees of a workman\u27s compensation board in Canada and used social network analysis and hierarchical linear modeling to analyze the data. The results show that knowledge complexity and knowledge teachability increased the likelihood of finding value in person-to-person knowledge transfer, but knowledge observability did not. Contrary to expectations, whether the knowledge was available in the KMS had no impact on the value of person-to-person knowledge transfer. In terms of the social network, individuals with larger networks tended to perceive more value in the person-to-person transfer of knowledge than those with smaller networks

    Signatures of Quark-Gluon-Plasma formation in high energy heavy-ion collisions: A critical review

    Full text link
    A critical review on signatures of Quark-Gluon-Plasma formation is given and the current (1998) experimental status is discussed. After giving an introduction to the properties of QCD matter in both, equilibrium- and non-equilibrium theories, we focus on observables which may yield experimental evidence for QGP formation. For each individual observable the discussion is divided into three sections: first the connection between the respective observable and QGP formation in terms of the underlying theoretical concepts is given, then the relevant experimental results are reviewed and finally the current status concerning the interpretation of both, theory and experiment, is discussed. A comprehensive summary including an outlook towards RHIC is given in the final section.Comment: Topical review, submitted to Journal of Physics G: 68 pages, including 39 figures (revised version: only minor modifications, some references added

    Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs

    Get PDF
    Importance A deep learning system (DLS) that could automatically detect glaucomatous optic neuropathy (GON) with high sensitivity and specificity could expedite screening for GON. Objective To establish a DLS for detection of GON using retinal fundus images and glaucoma diagnosis with convoluted neural networks (GD-CNN) that has the ability to be generalized across populations. Design, Setting, and Participants In this cross-sectional study, a DLS for the classification of GON was developed for automated classification of GON using retinal fundus images obtained from the Chinese Glaucoma Study Alliance, the Handan Eye Study, and online databases. The researchers selected 241 032 images were selected as the training dataset. The images were entered into the databases on June 9, 2009, obtained on July 11, 2018, and analyses were performed on December 15, 2018. The generalization of the DLS was tested in several validation datasets, which allowed assessment of the DLS in a clinical setting without exclusions, testing against variable image quality based on fundus photographs obtained from websites, evaluation in a population-based study that reflects a natural distribution of patients with glaucoma within the cohort and an additive dataset that has a diverse ethnic distribution. An online learning system was established to transfer the trained and validated DLS to generalize the results with fundus images from new sources. To better understand the DLS decision-making process, a prediction visualization test was performed that identified regions of the fundus images utilized by the DLS for diagnosis. Exposures Use of a deep learning system. Main Outcomes and Measures Area under the receiver operating characteristics curve (AUC), sensitivity and specificity for DLS with reference to professional graders. Results From a total of 274 413 fundus images initially obtained from CGSA, 269 601 images passed initial image quality review and were graded for GON. A total of 241 032 images (definite GON 29 865 [12.4%], probable GON 11 046 [4.6%], unlikely GON 200 121 [83%]) from 68 013 patients were selected using random sampling to train the GD-CNN model. Validation and evaluation of the GD-CNN model was assessed using the remaining 28 569 images from CGSA. The AUC of the GD-CNN model in primary local validation datasets was 0.996 (95% CI, 0.995-0.998), with sensitivity of 96.2% and specificity of 97.7%. The most common reason for both false-negative and false-positive grading by GD-CNN (51 of 119 [46.3%] and 191 of 588 [32.3%]) and manual grading (50 of 113 [44.2%] and 183 of 538 [34.0%]) was pathologic or high myopia. Conclusions and Relevance Application of GD-CNN to fundus images from different settings and varying image quality demonstrated a high sensitivity, specificity, and generalizability for detecting GON. These findings suggest that automated DLS could enhance current screening programs in a cost-effective and time-efficient manner

    Using social cognitive career theory to understand why students choose to study computer science

    Get PDF
    The aim of this research is to use Social Cognitive Career Theory (SCCT) to identify and understand reasons why students choose to study Computer Science (CS) at university. SCCT focuses on students’ prior experience, social support, self-efficacy and outcome expectation. The research is part motivated by the desire to increase female participation rates in CS, particularly in the UK. Policymakers can use the factors that both females and males identify as influencing their choice of studying CS to enhance the experiences of all students prior to coming to university, but female students in particular. The study uses a semi-structured interview with 17 mixed gender subjects currently studying CS at three Scottish universities. The findings are that social support from family, teachers, friends and mentors is a particularly important factor in choosing to study CS, especially for female subjects. The career paths offered by a CS degree is another major factor, not just the potential jobs, but also the general value of a CS education and the potential to make useful contributions to society. School education appeared to have limited influence, though exposure to problem solving, programming, online self-learning and internships are positive influences. The stereotypical view of CS students as ‘geeks’ is outdated and unhelpful – it is more appropriate to see them as ‘analytical’ or ‘over-achievers’. Subjects make many suggestions for improving the CS education provided at school, especially to make it more attractive to females, including: make it compulsory, teach it earlier, include more programming and problem solving, and increase the visibility of female exemplars and role models

    Fabrication and characterization of RNA aptamer microarrays for the study of protein–aptamer interactions with SPR imaging

    Get PDF
    RNA microarrays were created on chemically modified gold surfaces using a novel surface ligation methodology and employed in a series of surface plasmon resonance imaging (SPRI) measurements of DNA–RNA hybridization and RNA aptamer–protein binding. Various unmodified single-stranded RNA (ssRNA) oligonucleotides were ligated onto identical 5′-phosphate-terminated ssDNA microarray elements with a T4 RNA ligase surface reaction. A combination of ex situ polarization modulation FTIR measurements of the RNA monolayer and in situ SPRI measurements of DNA hybridization adsorption onto the surface were used to determine an ssRNA surface density of 4.0 × 10(12) molecules/cm(2) and a surface ligation efficiency of 85 ± 10%. The surface ligation methodology was then used to create a five-component RNA microarray of potential aptamers for the protein factor IXa (fIXa). The relative surface coverages of the different aptamers were determined through a novel enzymatic method that employed SPRI measurements of a surface RNase H hydrolysis reaction. SPRI measurements were then used to correctly identify the best aptamer to fIXa, which was previously determined from SELEX measurements. A Langmuir adsorption coefficient of 1.6 × 10(7) M(−1) was determined for fIXa adsorption to this aptamer. Single-base variations from this sequence were shown to completely destroy the aptamer–fIXa binding interaction

    Higgs Boson Masses in the Complex NMSSM at One-Loop Level

    Get PDF
    The Next-to-Minimal Supersymmetric Extension of the Standard Model (NMSSM) with a Higgs sector containing five neutral and two charged Higgs bosons allows for a rich phenomenology. In addition, the plethora of parameters provides many sources of CP violation. In contrast to the Minimal Supersymmetric Extension, CP violation in the Higgs sector is already possible at tree-level. For a reliable understanding and interpretation of the experimental results of the Higgs boson search, and for a proper distinction of Higgs sectors provided by the Standard Model or possible extensions, the Higgs boson masses have to be known as precisely as possible including higher-order corrections. In this paper we calculate the one-loop corrections to the neutral Higgs boson masses in the complex NMSSM in a Feynman diagrammatic approach adopting a mixed renormalization scheme based on on-shell and DRˉ\bar{DR} conditions. We study various scenarios where we allow for tree-level CP-violating phases in the Higgs sector and where we also study radiatively induced CP violation due to a non-vanishing phase of the trilinear coupling AtA_t in the stop sector. The effects on the Higgs boson phenomenology are found to be significant. We furthermore estimate the theoretical error due to unknown higher-order corrections by both varying the renormalization scheme of the top and bottom quark masses and by adopting different renormalization scales. The residual theoretical error can be estimated to about 10%
    corecore