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Abstract. Fundamentals of a function theory in co-dimension one for
Clifford algebra valued functions over Rn+1 are considered. Special at-
tention is given to their origins in analytic properties of holomorphic
functions of one and, by some duality reasons, also of several complex
variables. Due to algebraic peculiarities caused by non-commutativity of
the Clifford product, generalized holomorphic functions are characterized
by two different but equivalent properties: on one side by local derivabil-
ity (existence of a well defined derivative related to co-dimension one)
and on the other side by differentiability (existence of a local approx-
imation by linear mappings related to dimension one). As important
applications sequences of harmonic Appell polynomials are considered
whose definition and explicit analytic representations rely essentially on
both dual approaches.
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1 Introduction

In 1968, exactly 50 years ago, E. M. Stein and G. Weiss proved in their seminal
paper [1], the ”correspondence of irreducible representations of several rotation
groups to first order constant coefficient partial differential equations generalizing
the Cauchy-Riemann equations.” They showed how certain properties of complex
one-dimensional function theory extend to solutions of those systems, in partic-
ular the fact of being harmonic solutions. In their list of systems one can find a
generalized Riesz system [2], the Moisil-Theodoresco system [3], spinor systems
as n-dimensional generalization of Dirac’s equations [4], Hodge - de Rham equa-
tions [5] and special cases of them. But the aim of proving that correspondence
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between representation groups and partial differential equations were merely of
qualitative nature and deeply connected with properties of harmonic functions
in several real variables. But whereas that paper uses purely real methods, two
years later R. Delanghe published On Regular-analytic Functions with Values
in a Clifford Algebra [6], thereby extending Fueters results [9] about solutions
of the generalized Riesz system from the quaternionic to the general Clifford
Algebra case.

Nowadays, function theoretic methods over non-commutative algebras are
applied in a big variety of mathematical fields, like for example in potential
theory, differential geometry, operator theory, BVP of partial differential equa-
tions, analytic number theory, discrete and computational mathematics and their
corresponding applications in Sciences and Engineering. For a first introduc-
tion, particularly dealing with Maxwell’s and Schrödinger’s equations the reader
should consult Kravchenko [7]. An account about the development of this field
until 2000 is given by Delanghe in [8].

But it seems to be remarkable that the first attempt for a systematical de-
velopment of methods based on Clifford algebras started already 40 years before
Delanghe’s article [6] and was done by the Swiss mathematician Rudolf Fueter
(1880-1950). He initiated around 1930 the foundation of a theory of quater-
nion valued functions of a quaternion variable ([10]). Being already a worldwide
known number theorist, he was interested in such a tool for the development of
new analytical methods in Number Theory (c.f. [11]). But soon he recognized
that he had found an new approach to generalize the classical complex function
theory in a way different from that of holomorphic functions of several complex
variables. It was exactly 70 years ago that in the Fall Semester of 1948/49, Fueter
gave one of his last lessons on Funktionentheory im Hypercomplexen (Function
theory in the hypercomplex) [12]. Since this manuscript of the lessons, still ap-
proved by Fueter, were never published as book, it is not well known that it
contains as Chapter IV: Funktionentheorie der Clifford’schen Algebren on 70
pages (p.247-317) a complete description of an approach to function theory in
Clifford algebras based on generalized Cauchy integral theorems. As far as we
know, only in the book [13] one can find a remark that R. Fueter, who is com-
monly considered only as one of the founders of Quaternionic Analysis (cf. [14]),
made already contributions to what was 30 years later coined Clifford Analysis
[15, 16].

During 50 years, having been guided by the paper [1], the research on quali-
tative properties of generalized Cauchy-Riemann or Dirac systems continues to
rely heavily on methods of representation theory and its relationship to Har-
monic Analysis (see [4, 8, 15, 16]). It legitimates to think about Clifford Analysis
as a refinement of Harmonic Analysis. Indeed, in this sense it is a powerful
tool for applying those methods to the study of problems in PDE, in particular
what concerns their symmetries and the algebraic structures behind (Heisenberg
algebras, Lie algebras etc.).

But the aim of this paper is to call attention to a complementary treatment
of higher-dimensional generalized Cauchy-Riemann systems, namely to function
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theoretic methods adapted to the approximation and numerical calculation of
its solutions, briefly called monogenic functions. The approach we will present
is closely connected with the hypercomplex generalization of the Wirtinger cal-
culus (which is the one complex variable case of the Dolbeault calculus in the
theory of several complex variables). It is not only the basis for understanding
the generalization of the Cauchy approach to holomorphic functions [17] but
also clarifies the usefulness of several hypercomplex variables and corresponding
differential forms [18–20]. The fact that the conjugate hypercomplex Cauchy-
Riemann operator acts as derivation operator like in the complex case (cf. [21])
confirmed the observation of S. Semmes (1996), that Clifford Analysis can be con-
sidered as co-dimension one function theory [22]. Moreover, this non-standard
approach opened the way to investigate new analytic, geometric and combinato-
rial properties of monogenic functions. Even new number theoretic results could
be obtained, thereby in some sense coming back to Fueter’s motivation for his
work [11].

The present paper is a revised and substantially abridged version of [20] in-
cluding recent results on topics for which the coexistence of both concepts, i.e.
hypercomplex derivability as well as hypercomplex differentiability, was essential.
After a short introduction to Clifford algebras in Sections 2 and 3, a calculus of
alternative hypercomplex differential forms is considered in Section 4. As simple
consequences the generalized Stokes’ formula as well as a generalized Cauchy in-
tegral formula are derived, stressing the relation valid for holomorphic functions
in the complex plane, too. At the end of this section the expression of the general-
ized Cauchy-Riemann operator as areolar derivative in the sense of Pompeiu [23]
is given. Naturally, the next Section 5 introduces the concept of hypercomplex
derivability again based on alternative differential forms. The analogous expres-
sion of the hypercomplex derivative as another areolar derivative in the sense of
Pompeiu finishes this section. Section 6 refers to two essential theorems proved
in [17] resp. [21] which together establish the complete equivalence of the Cauchy
and the Riemann approaches for monogenic functions. As direct consequence of
differentiability, Section 7 introduces the local expansion of those hypercomplex
functions in power series of several hypercomplex variables almost analogous to
the case of multivariate real series expansion. The last Section 8 is dedicated to
a first resume of recent results in the theory of generalized sequences of Appell
polynomials [24] being a type of application of monogenic functions where all
their fundamental properties mentioned before come together.

2 Clifford algebras

A finite-dimensional algebra with a unit element over the field of real or complex
numbers was formerly known as a hypercomplex system. Clifford algebras are
examples of them. They possess an isomorphic representation as elements of a
(2n × 2n) matrix algebra. The matrix representations of complex numbers and
quaternions are well known special cases.
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Clifford algebras as associative non-commutative algebras over the field of
real numbers can be defined as follows (for more details and other possibilities
see, for instance, [20]).

Definition 1. Let {e0, e1, . . . , en} be a ONB of Rn+1 subject to the multiplica-
tion rules

ekel + elek = −2δkle0, (k, l = 1, . . . , n),

where δij is the Kronecker symbol. The associative 2n-dimensional universal Clif-
ford algebra C`0,n over R with unity is the set of numbers α ∈ C`0,n written in
the form

α =
∑
A

αAeA,

with the basis {eA : A ⊆ {1, . . . , n}} formed by

eA = eh1eh2 . . . ehr , 1 ≤ h1 < . . . < hr ≤ n, e∅ = e0 = 1,

and where the components αA are real numbers. The conjugate element to α is
defined by ᾱ =

∑
A αAēA, where

ēA = ēhr ēhr−1 . . . ēh1 ; ēk = −ek (k = 1, . . . , n), ē0 = e0 = 1.

The norm of α ∈ C`0,n is defined by |α| = (
∑
A αα)1/2 = (

∑
A α

2
A)1/2.

3 Hypercomplex structures of Rn+1

The theory of complex functions of several complex variables uses for the de-
scription of the pre-image set the algebra of complex numbers by combining 2n
real variables (x1, . . . , xn, y1, . . . , yn) ∈ R2n to a vector of n complex variables
(z1, . . . , zn) ∈ Cn; zk = xk + iyk, k = 1, . . . n. Then it is possible to realize the
inverse variable transformation from the complex to the real variables with the
help of the vector of their conjugates (z̄1, . . . , z̄n) in the form

xk =
1

2
(z̄k + zk) and yk =

i

2
(z̄k − zk), k = 1, . . . n.

In such a way R2n is endowed with a complex structure by identifying R2n with
Cn, symbolically R2n ∼= Cn. Like in the ordinary case of two real and one complex
variables (R2 ∼= C1) this leads to the reduction of the real dimension 2n to the
half, i.e., to n, compared to Cn. In particular, the local property of complex
differentiability of a function f : Ω ⊂ Cn → C implies that f may be considered
as a function of zk, k = 1, . . . n and not of z̄k, k = 1, . . . n. This is due to the
fact that it can locally be approximated by a linear mapping (the differential)
of the vector (dz1, . . . dzn). One important consequence is the representation of
f : Ω ⊂ Cn → C by multiple power series in (z1, . . . , zn) (Weierstrass approach).

If we are looking for a hypercomplex structure of Rn+1 in the aforementioned
sense, then we can recognize several possibilities for similar procedures.
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I. Paravectors. Let the element x = (x0, x1, . . . , xn) of Rn+1 be identified with

z = x0 + x1e1 + . . .+ xnen ∈ An := spanR{1, e1, . . . , en}

and called paravector. The conjugate of z is given by

z = x0 − x1e1 − . . .− xnen

and its norm is

|z| :=
√
zz̄ = (

n∑
i=1

x2
i )

1/2,

analogously to the complex case. Therefore each non-zero z ∈ An is invertible
and its inverse is z−1 = z̄

|z|2 .

The usual approach to hypercomplex function theory considers C`0,n-valued
functions of the form f(z) =

∑
A fA(z)eA, fA(z) ∈ R, as mappings

f : Ω ⊂ Rn+1 ∼= An 7−→ C`0,n.

Of course, the big advantage of this approach is to deal with only one hypercom-
plex variable z. Compared with the ordinary case of two real and one complex
variables (R2 ∼= C1) it reflects the reduction of the real dimension (n + 1) to
dimension 1, i.e., by n, compared to Rn+1.

II. Several hypercomplex variables. A second hypercomplex structure of
Rn+1 different from that given by An consists in the following isomorphism:

Rn+1 ∼= Hn = {z : zk = xk − x0ek;x0, xk ∈ R, k = 1, . . . , n}.

More detailed, this means to take n copies Ck of C identifying i ∼= ek, (k =
1, . . . , n); x0

∼= <z; xk ∼= =z; where z ∈ C, and let Ck := −ekC. Then Hn is
the cartesian product Hn := C1 × · · · × Cn and C`0,n-valued functions f(z) =∑
A fA(z)eA are considered as mappings

f : Ω ⊂ Rn+1 ∼= Hn 7−→ C`0,n.

Remark 1. In the following sections we will see that simple algebraic relations
allow to consider both approaches as in some sense dual approaches. The quali-
tatively new point of view is the (not only formal) relationship with Cn. Later we
will see that one of the most important facts for the usefulness of hypercomplex
function theory is its independence from the parity of the underlying real space
and its direct relationship to harmonic function theory.

4 Calculus of alternative hypercomplex differential forms

In the usual Riemann approach to monogenic functions the hypercomplex form of
Stokes’ theorem plays a central role. This is due to the fact that for monogenic
functions Stokes’ theorem can be interpreted as a generalization of Cauchy’s
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integral theorem for holomorphic functions in the plane. We will see that the
consideration of Hn permits a better insight into the nature of the hypercomplex
form of Stokes’ theorem, too. Indeed, the hypercomplex form of Stokes’ theorem
can be derived in a very natural way by using (n+ 1) hypercomplex differential
forms defined by:

dz0 = dx0, dzk = −ekdx0 + dxk; k = 1, . . . , n, (1)

i.e., in terms of basic real differential 1-forms. In this way we can see that theHn-
approach reflects some formal duality to the case of several complex variables. It
is the key to the notion of hypercomplex derivative and also reveals the role of
the conjugated Cauchy-Riemann operator as derivation operator. Therefore we
define the outer product of the basic differential forms (1) in the following way:

Definition 2. The product of two basic hypercomplex 1-forms is defined by

dzk ∧ dzl = (−ekdx0 + dxk) ∧ (−eldx0 + dxl)

= dxk ∧ dxl − ekdx0 ∧ dxl − eldxk ∧ dx0,

dzk ∧ dz0 = (−ekdx0 + dxk) ∧ dx0 = dxk ∧ dx0; k, l = 1, . . . , n.

A basic hypercomplex p-form is the outer product of p different basic hypercom-
plex 1-forms.

The general form of a basic hypercomplex p-form can easily be written with the
help of a multi-index ν = (ν0, ν1, . . . , νp−1), 0 ≤ ν0 < ν1 < · · · < νp−1 ≤ n and
relies on the fact (property 1 below) that the set of basic hypercomplex 1-forms
is an alternative outer algebra (exactly as in the case of real differential forms).
Therefore every basic p-form ωp ∈

∧p
An

can be written in a unique way as

ωp = dzν0 ∧ dzν1 ∧ . . . ∧ dzνp−1
=: dzν .

The verification of the following properties is straightforward.

1. The outer product is alternative, i.e.,

dzk ∧ dzl = −dzl ∧ dzk, k 6= l, dzk ∧ dzk = 0.

2. If the notation dx̂m (m = 0, . . . , n) means that in the ordered outer product
of the 1-forms dxk (k = 0, . . . , n) the factor dxm is absent, then the hyper-
complex surface element in Rn+1 is given by dσ(n) = dx̂0 − e1dx̂1 + · · · +
(−1)nendx̂n (cf. [16]). In terms of (1) there holds

dσ(n) = dz1 ∧ · · · ∧ dzn. (2)

3. The volume element dV in Rn+1 has in terms of (1) the simple expression

dV = dz0 ∧ dσ(n) = (−1)ndσ(n) ∧ dz0 = dz0 ∧ dz1 ∧ · · · ∧ dzn. (3)
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4. With the usual notation ∂k = ∂
∂xk

, let df = ∂0fdx0 + ∂1fdx1 · · · + ∂nfdxn
be the differential of f ∈ C1(Rn+1, Ω). By using (1), the right (resp. left)
hypercomplex form of the differential of f has the form:

df = (fD)dz0 + ∂1fdz1 + · · ·+ ∂nfdzn resp.

df = dz0(Df) + dz1∂1f + · · ·+ dzn∂nf,

where

D = ∂0 + e1∂1 + · · ·+ en∂n,

is the so-called generalized Cauchy-Riemann operator.

If D = ∂0 − e1∂1 − · · · − en∂n denotes the conjugate operator to D then
DD = DD = ∆, factorizing the Laplace operator like in the complex case.

5. Consider the hypercomplex (n− 1)–form

dσ(n−1) := −e1dx̂0,1 + e2dx̂0,2 + · · ·+ (−1)nendx̂0,n,

where dx̂0,m (m = 1, . . . , n) stands for the ordered outer product of the
1-forms dxk (k = 0, . . . , n) where the factors dx0 and dxm are absent. Then
for n = 1 the constant 0 - form dσ(0) = −e1

∼= −i is obtained, i.e., exactly
the factor that is necessary to pass from z ∈ C to z1 = −iz ∈ C1. The
designation of this (n − 1)- form by dσ(n−1) is based in the following fact.
The 1-form of the vector-part of dz, i.e.,

Vec dz = e1dx1 + . . .+ endxn

can be considered as related to a hyperplane x0 = c = const. Then dσ(n−1) is
just the corresponding surface-element with respect to the effective variables
(x1, . . . , xn).

Now let ν = (ν0, ν1, . . . , νp−1), 0 ≤ ν0 < ν1 < · · · < νp−1 ≤ n, be a multi-index,
and for a given set fν = fν(z) of

(
n+1
p

)
C`0,n-valued continuously differentiable

functions in Ω, consider the forms ωp =
∑
ν dzνfν(z), resp. ωp =

∑
ν fν(z)dzν .

In the case of a left form we have:

Definition 3. Let ωp =
∑
ν dzνfν(z) be a continuously real differentiable left

p–form on Ω. Then its (outer) derivative dωp is defined as the (p+ 1)–form

dωp =
∑
ν

(−1)pdzν ∧ dfν(z),

where dfν is the differential of fν , i.e., the outer derivative of the 0–form fν .

For right p–forms or two-sided p–forms ωp (i.e., having C`0,n-valued coefficients
on both sides) the definition of dωp is straightforward.

The use of alternative hypercomplex differential forms permits a very lucid
deduction of the hypercomplex form of Stokes’ integral theorem as well as the
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generalization of Cauchy’s theorem. Therefore let ω = f(z)dσ(n) be a hypercom-
plex differential n - form built in analogy to the real case as a product of the
surface element dσ(n) in Rn+1, i.e. (2), with a function f ∈ C1(Rn+1, Ω). The
general Stokes’ theorem in the form∫

∂Ω

ω =

∫
Ω

dω

applied to a (n+ 1)-dimensional positively oriented domain Ω implies together
with the Definition 3 of the outer derivative and with (3) that∫
∂Ω

dσ(n)f(z) =

∫
Ω

(−1)ndσ(n) ∧ df =

∫
Ω

(−1)ndσ(n) ∧ dz0Df =

∫
Ω

DfdV. (4)

The following theorem shows that the generalized Cauchy-Riemann operator
D can be characterized as an areolar derivative in the sense of Pompeiu. The
concept of areolar derivative in the sense of Pompeiu originated from [23] and
has been discussed in the hypercomplex context in [13, 20, 25].

Theorem 1. Let z? be a fixed point in a positively oriented differentiable and
contractible domain Ω ⊂ Hn with smooth boundary. Consider a regular sequence
of subdomains {Ωn} which is shrinking to z? if n tends to infinity and whereby
z? belongs to all Ωn. For a real differentiable function f defined in Ω holds

(fD)(z?) = lim
n→∞

1

mes Ωn

∫
∂Ωn

f(z)dz1 ∧ · · · ∧ dzn

i.e. the (right) generalized Cauchy-Riemann operator D is a (right) generalized
areolar derivative in the sense of Pompeiu of f = f(z) over Ω at z?.

Remember that in our notation, using (3),

mes Ωn =

∫
Ωn

dV =

∫
Ωn

dz0 ∧ dz1 ∧ · · · ∧ dzn.

The proof of this theorem relies on the application of the hypercomplex form of
Stokes’ theorem and the mean value property (c.f. [20]).

Only one step is left for obtaining a generalized Cauchy’s integral formula.
Therefore we mention

Definition 4. Let f = f(z) be continuously real differentiable in an open set
Ω ⊂ Rn+1 ∼= Hn ∼= An. Then f is called left (resp. right) monogenic in Ω, if
and only if Df = 0 (fD = 0).

The components fA(z) of a monogenic function f(z) are real harmonic func-
tions not only pluri-harmonic like in the case of several complex variables (“re-
finement” of harmonic function theory).

The designation of left (resp. right) monogenic functions which we are also
using has historically been introduced in [16]. For stressing more the complete
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coincidence with the situation in the complex case, recently in [13] and other
papers f is called (Clifford) holomorphic.

Cauchy’s integral formula follows immediately from (4): If f is (left) mono-
genic then ω = dσ(n)f(z) is closed, i.e.∫

∂Ω

dσ(n)f(z) = 0.

Now we are able to introduce the already announced notion of hypercomplex
derivability and the definition of the hypercomplex derivative (c.f. [21]).

5 Hypercomplex derivability

The notion of left (L-) or right (R-) hypercomplex derivability relies on the
intrinsic relations between two forms of degree n (more concretely on dσ(n) and
d(dσ(n−1)f) or d(fdσ(n−1))) generalizing an idea of [26].

Definition 5. A function f : Hn 7→ C`0,n is L - (R-) derivable at z ∈ Hn if it
is real differentiable at z and there exists Af,L(z) (Af,R(z)) ∈ C`0,n such that

d(dσ(n−1)f) = dσ(n)Af,L(z) resp. d(fdσ(n−1)) = Af,R(z)dσ(n).

Af,L(z) ( Af,R(z)) are called the left and right derivative of f at z, respectively.

In [21] for the first time could be proven that the conjugate Cauchy-Riemann
operator, more concretely 1

2D, acts like a hypercomplex derivation operator as

one should expect in analogy to the complex case, since Af,L(z) = 1
2Df, resp.

Af,R(z) = 1
2fD. Moreover, with this definition one has a generalization of the

classical Cauchy approach which relies directly on a limit process like in the
classical complex case. In analogy to Theorem 1 one has also its expression in
form of an areolar derivative in the sense of Pompeiu. In the left (and analogously
in the right) case we have

Theorem 2. Let S ⊂ Ω be an oriented differentiable n-dimensional hypersur-
face with boundary ∂Sm and z∗ be a fixed point in S. Consider a sequence of
subdomains {Sm} which is shrinking to z∗ if m → ∞. Suppose now that the
function f is left monogenic in Ω, i.e. Df = 0. Then the left hypercomplex
derivative 1

2D is an areolar derivative in the sense of Pompeiu of the form

1

2
Df = lim

m→∞

[∫
Sm

dσ(n)

]−1 ∫
∂Sm

(dσ(n−1)f).

Moreover, following [21], we have

Theorem 3. Consider f = f(z) with z ∈ Ω ⊂ Hn. Then f is left (resp. right)
monogenic in z iff f has in z a uniquely defined hypercomplex areolar derivative
f ′L = 1

2Df ; (f ′R = 1
2fD) in the sense of Pompeiu.
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For example, for the left case, 1
2Df = 1

2 (∂0f − e1∂1f − · · · − en∂nf) = ∂0f
due to the fact that Df = ∂0f + e1∂1f + · · · + en∂nf = 0. Obviously, the
hypercomplex derivative of a monogenic function f is a differential coefficient
between two differential forms (cf. [26]), this time not of degree 1 as usual, but
of degree n (which is, of course, the same in the simplest case n = 1, i.e., in the
complex plane case). Notice also the natural presence of the factor 1/2 on D like
in the case of Wirtinger’s complex partial derivative ∂z = 1

2 (∂x − i∂y). Several
formulas would become more symmetric and compatible with the complex case,
if one would use this coefficient also in the hypercomplex case. For simplicity
and from now on we use the notation ∂ := 1

2D.

6 Hypercomplex differentiability

The adequate definition of hypercomplex differentiability as generalization of
complex differentiability remained an unsolved problem until the end of the 80-
ties of the last century (c.f. [27]). Based on the use of the hypercomplex structure
expressed by Rn+1 ∼= Hn and the fact that differentiability is equivalent with
the possibility of local linearization of the increment of the considered function,
we have the following

Definition 6. Let f be a continuous mapping from a neighborhood of z∗ ∈ Hn
into C`0,n. Then f is called left hypercomplex differentiable (resp. right hypercom-
plex differentiable) at z∗ if there exists a left (resp. right) C`0,n-linear mapping
` such that

lim
∆z→0

|f(z∗ +∆z)− f(z∗)− `(∆z)|
‖∆z‖

= 0.

We say that a function f is hypercomplex differentiable in Ω ⊂ Rn+1 ∼= Hn if it
is hypercomplex differentiable at all points of Ω (c.f. [17]).

Moreover, it has been shown in [17], that the equivalence of the concept of
hypercomplex differentiability and monogeneity is guaranteed. Analogously to
Theorem 3 the following theorem is valid.

Theorem 4. Let f = f(z) be continuously real differentiable in an open set
Ω ⊂ Hn. Then f is hypercomplex L- (R-) differentiable in Ω, if and only if
Df = 0 (fD = 0) in Ω, i.e. if f is left (resp. right) monogenic.

Again, but now through the property of hypercomplex differentiability the Cauchy
approach to holomorphic functions is generalized. In [28], which discussed the
impossibility of adequate generalizations of Cauchy’s as well as Weierstrass’ ap-
proaches (by the concept of convergent power series) to holomorphic functions in
the higher-dimensional hypercomplex setting, this approach has been overseen.
Both theorems, Theorem 3 together with Theorem 4, show that hypercomplex
derivability, hypercomplex differentiability and monogeneity of a hypercomplex
function f : Ω ⊂ Rn+1 ∼= Hn 7−→ C`0,n are equivalent.



Function Theory in co-dimension one 11

7 Generalized power series

The aim of this section is to show that the Hn-approach to monogenic func-
tions leads in a very natural and direct way to power series in several hyper-
complex variables (Weierstrass approach). For instance, no auxiliary application
of Legendre or Gegenbauer polynomials (cf. [14, 16]) is needed. In general, the
non-commutative multiplication in Clifford algebras causes many difficulties in
hypercomplex function theory. But the systematical use of n hypercomplex vari-
ables allows a deeper structural insight from the beginning and simplifies essen-
tially the calculations, particularly when dealing with monogenic polynomials.
For more details see [20]. We begin by illustrating some aforementioned facts in
relation to the classical complex case thereby also calling attention to important
differences to the hypercomplex case.

1. Consider an open set Ω ⊂ R3 and a continuously differentiable vector field
(the velocity field of a flow) g = (g0, g1, g2) on Ω. Then the flow of a non-
compressible fluid without sources nor sinks is the solution of a Riesz system
(particular case of the Riesz system considered in [1]), namely{

div g = 0
curl g = 0

.

In the equivalent hypercomplex setting we consider a paravector valued func-
tion f = f0 +f1 e1 +f2 e2 where (f0, f1, f2) := (g0,−g1,−g2). Then the Riesz
system can be written with respect to f in the compact form as

Df = 0 or fD = 0

and represents obviously a generalized Cauchy-Riemann system in R3.
2. The hypercomplex variables

fk(z) = zk := xk − x0ek = −1

2
[zek + zek], (k = 1, . . . , n)

are left- and right-monogenic functions, also called totally regular variables
(c.f. [6, 14]).

3. The identity function f(z) = z ∈ An is not monogenic unless n = 1 (the
classical complex case), since Df = fD = 1− n.

4. Powers of z, i.e. f(z) = zn and simple products of the totally regular variables
like zj · zk, j 6= k, are not monogenic. This and the previous property
show that it is not possible to deal in the same way as usual with the non-
monogenic ordinary power of the underlying variable z ∈ An.

5. Symmetric products of the totally regular variables in the form

zj × zk :=
1

2
[zjzk + zkzj ] = xjxk − x0xkej − x0xjek

are left- and right-monogenic. More general, it has been proven in [29], that
if ν = (ν1, . . . , νn) is a multi-index, all homogeneous monogenic polynomials
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of degree |ν| = k can be obtained as linear combinations (from the left or
from the right) of generalized powers given in the form

z ν := zν11 × · · · × zνnn = z1 × · · · × z1︸ ︷︷ ︸
ν1

× · · · × zn × · · · × zn︸ ︷︷ ︸
νn

=
1

k!

∑
π(i1,...,ik)

zi1 · · · zik , (5)

where the sum is taken over all permutations of {i1, . . . , ik} ⊆ {1, . . . , n}
and zj = xj − x0ej , j = 1, . . . , n.
Moreover, all functions of the form f(z) = z ν , are left and right monogenic
and Cl0,n - linear independent. Therefore they can be used as basis for gen-
eralized power series. Following [29] it has been shown that the generalized
power series of the form

P (z) =

∞∑
k=0

∑
|ν|=k

z νcν

 , cν ∈ Cl0,n

generates in the neighborhood of the origin a monogenic from the left func-
tion f(z) and coincides in the interior of its domain of convergence with the
Taylor series of f(z), i.e, in a neighborhood of the origin we have

f(z) =

∞∑
k=0

1

k!

∑
|ν|=k

z ν
(
k

ν

)
∂|ν|f(0)

∂x ν

 ,

where x = (x1, . . . , xn). Analogously monogenic from the right power series
can be considered as we will do in the sequel.

By using classical methods of estimation the following theorem can be proved:

Theorem 5 ([20]). Let P (a, z) be a given right power series around a ∈ Hn.
If P (a, z) converges in some polycylindric domain of the form

U(r,a) = {z ∈ Hn : |zk − ak| = ((x0−α0)2 + (xk −αk)2)1/2 < rk, k = 1, . . . , n},

then P (a, z) is right hypercomplex differentiable in U(r,a) and the partial deriva-
tives with respect to xk are obtained by formal differentiation as

∂P (z)

∂xk
=
∑
µ

cµµk(z− a)µ−τk (6)

where τk is the multi-index with 1 at place k and zero otherwise.

Formula (6) shows that the derivatives also represent monogenic functions in the
same domain of convergence. By induction follows
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Theorem 6. Every R- (L-) generalized power series is infinitely R– (L–) hy-
percomplex differentiable inside the domain of convergence.

Calculating the partial derivatives of the generalized powers (z−a)µ in z = a
leads to

∂|ν|

∂xν
(z− a)µ =

{
µ!, if ν = µ

0, if ν 6= µ

and this implies

Theorem 7. Every convergent R-power series generates in the interior of its
domain of convergence a monogenic function f(z) and coincides there with the
Taylor series of f(z), i.e., in a neighborhood of z = a we have

f(z) =
∑
µ

1

µ!

∂|µ|f(a)

∂xµ
(z− a)µ

(analogously for L–series; there the coefficients are on the right side of the pow-
ers).

In view of the unique determination of the coefficients of the Taylor series of
a monogenic function we can formulate the uniqueness theorem for generalized
Taylor series:

Theorem 8. If the coefficients of two generalized R– (L–) Taylor series coin-
cide in an arbitrarily small neighborhood of the common point of development a
than they coincide identically.

The uniqueness theorem is the basis for the Cauchy-Kowalewskaya extension of
a real-analytic C`0,n-valued function in Rn:

Theorem 9. Let f(x) be real-analytic in the parallelepiped

V(r) = {x ∈ Rn : |xk| < rk, k = 1, . . . , n}.

Then an analytic continuation of f to an R– (L–) monogenic function in

U(r) = {z ∈ Hn : |zk| < rk, k = 1, . . . , n}.

is given in a unique way by the function

f∗R(z) =
∑
|µ|=0

1

µ!

∂|µ|f(0)

∂xµ
zµ resp. f∗L(z) =

∑
µ

zµ
1

µ!

∂|µ|f(0)

∂xµ
, (7)

and we have

f∗R(z)|x0=0 = f∗L(z)|x0=0 = f∗(z)|Rn = f(x).
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Proof. Inside of V(r) the function f(x) has the Taylor series representation

f(x) =
∑
|µ|=0

1

µ!

∂|µ|f(0)

∂xµ
xµ (8)

and
f∗R(z)|x0=0 = f∗L(z)|x0=0 = f∗(z)|Rn = f(x)

becomes obvious. The convergence of (7) in U(r) is guaranteed by the conver-
gence of (8) in V(r) and the uniqueness follows from the uniqueness theorem for
generalized power series. ut

The f∗R(z) resp. f∗L(z) are called the right (resp. left) Cauchy–Kowalewskaya
extension (CK-extension) of f . In fact, Theorem 9 together with property 5
mentioned in the begin of this section, immediately indicates the way of passing
from a power series in x, i.e. given in Rn, to its monogenic continuation in Hn
as function of z simply by substituting x by z and changing at the same time
the ordinary product to the symmetric product (5).

8 An application: Hypercomplex Appell polynomials

8.1 Definition and some properties

In 1880, Appell [24] considered sequences of polynomials of degree k of one real
variable, (pk(x))k≥0, satisfying the recurrence relations

p′k(x) = kpk−1(x), k = 1, 2, . . . , (9)

where p0(x) is a non-zero constant.
Nowadays, any such sequence is called an Appell sequence, its members are

called Appell polynomials and (9) is usually referred as Appell property. Of
course, the basic idea is that the Appell polynomials behave like power-law
functions under the differentiation operation. The classical examples of Appell
polynomials besides the monomials (xk)k≥0, x ∈ R are the Bernoulli, Euler and
Hermite polynomials.

The following equivalent conditions characterizing Appell polynomials under-
pin the different approaches that have been developed to deal with real Appell
sequences as well as their generalizations (see e.g. [30–32]).

Theorem 10. Let (pk(x))k≥0 be a sequence of polynomials of one real variable.
Then the following conditions are equivalent:

1. (pk(x))k≥0 is an Appell sequence;
2. (pk(x))k≥0 satisfies

pk(x+ y) =

k∑
j=0

(
k
j

)
xk−jpj(y); (10)
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3. There exists (ak)k≥0, with a0 6= 0, such that

pk(x) =

k∑
j=0

(
k
j

)
ajx

k−j ; (11)

In hypercomplex analysis context, the hypercomplex derivative of a monogenic
function is the key player in the generalization of Appell’s concept of power-
like polynomial sequences (9) to higher dimensions. This generalization was first
introduced in [33] by using several hypercomplex variables (see Theorem 13) and
reads as follows.

Definition 7. A sequence of An–valued monogenic polynomials (Fk(x))k≥0 is
called an Appell sequence, if Fk(x) is of exact degree k and

∂Fk(x) = kFk−1(x), x ∈ An, k = 1, 2, . . . , (12)

where F0(x) is a non-zero constant.

Based on this concept, it is possible to obtain a binomial-type identity for
hypercomplex Appell sequences, which extend the identity (10) to the hyper-
complex case [34, Theorem 1].

Theorem 11. A monogenic polynomial sequence (Pk(x))k≥0 is an Appell se-
quence if and only if it satisfies

Pk(x) = Pk(x0 + x) =

k∑
j=0

(
k
j

)
xk−j0 Pj(x).

Hypercomplex Appell polynomials have received a lot of attention in the last
decade. They have been studied in detail in several papers by different authors
and various applications have been considered [33–41]. In what follows we focus
on a class of polynomials of the form

Pk(x) =

k∑
s=0

(
k

s

)
cs(n)xk−s0 xs, (13)

with coefficients cs(n) ∈ R and c0(n) 6= 0, for all n. For such class of polynomials
we can derive an hypercomplex analogue of (11) (see [39, Theorem 2] for details).
Moreover, we have (cf.[39, 42]):

Theorem 12. Polynomials Pk(x) of the form (13) are monogenic if and only if

ck(n) =
( 1

2 )b k+1
2 c

(n2 )b k+1
2 c

c0(n), (14)

where a(r) = Γ (a+r)
Γ (a) , (r=1,2,. . . ) denotes the Pochhammer symbol, with a(0) = 1.

In such cases, (Pk(x))k≥0 is an Appell sequence
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Polynomials of the form (13)-(14) with the normalization c0(n) = 1 have been
referred as Standard Appell Polynomials (SAP) in [43] and denoted by Pnk (x).
It is clear that this initial value can be changed to any real or hypercomplex
constant different from zero. In [44] the concept of Appell sequence was gener-
alized further by considering as first term an arbitrary generalized polynomial
constant of a fixed degree.

We stress the fact that P1
k(x) = (x0 + e1x1)k are the usual powers of the

holomorphic variable z = x0 + e1x1 (with the usual identification of e1 with the
complex imaginary unit). Moreover, real values of x lead to Pnk (x0) = xk0 , while
for x = x, we obtain the essential property which characterizes the difference to
the complex case Pnk (x) = ck(n)xk. One straightforward approach to construct
SAP is to consider the CK-extension of the powers ck(n)xk, which leads to the
following equivalent representation of Pnk (x) in terms of generalized powers (5).

Theorem 13. The SAP can be expressed as

Pk(z) = ck(n)
∑
|ν|=k

zν11 × · · · × zνnn
(
k

ν

)
eν11 × · · · × eνnn ,

Since Pnk (1) = Pk(−e1,−e2, . . . ,−en) = 1, Theorems 12-13 allow to derive
the following relation involving the generators of the algebra.

∑
|ν|=k

(−1)k
(
k

ν

)
(eν11 × · · · × eνnn )2 =

(n2 )b k+1
2 c

( 1
2 )b k+1

2 c
.

This identity is one among many others nice relations that have been obtained
through the use of the sequences (ck(n))k≥0. In fact such sequences, in particular
the n = 2 case, have important applications in harmonic analysis, theory of stable
holomorphic functions and combinatorics. We refer the interested reader to [45,
46] and references therein.

8.2 A matrix approach

A matrix representation of real Appell sequences (pk(x))k≥0 developed in [32]
relies on the matrix H whose entries are given by

(H)ij =

{
i, i = j + 1
0, otherwise, i, j = 0, 1, . . . .

(15)

In this context the role of H is essentially that of a derivation matrix.
For the sake of handle Appell sequences in a closed form, the vector

p(x) =
[
p0(x) p1(x) · · · pm(x)

]T
,

whose entries are the m + 1 first terms of the Appell sequence (pk(x))k≥0, is
introduced. Also, H is truncated in order to obtain a square matrix of order
m+ 1. In this case, H is a nilpotent matrix of degree m+ 1.
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The differential equation p′(x) = Hp(x) is the matrix counterpart of (9) for
the truncated Appell sequence (pk(x))0≤k≤m. Its general solution is

p(x) = eHxp(0) ≡ P(x)p(0),

where P(x) is the well known generalized Pascal matrix defined by

(P(x))ij =

{(i
j

)
xi−j , i ≥ j

0, otherwise, i, j = 0, 1, . . . ,m,

Note that by using the explicit representation (11), p(0) =
[
a0 a1 · · · am

]T
,

a0 6= 0.
Aiming a matrix approach of Appell sequences in the hypercomplex context,

multivariate homogeneous polynomials of the form (13) are considered. Such
polynomials correspond to (11) by replacing of real variable x by x0, real part
of the paravector x = x0 + x, and the constant aj by ajx

j .
Denoting by P(x) and P(x) the vectors

P(x) ≡ P(x0, x) =
[
P0(x) P1(x) · · · Pm(x)

]T
, (16)

and
P(x) ≡ P(0, x) =

[
a0x

0 a1x
1 · · · amxm

]T
,

respectively, a matrix form of the truncated sequence (Pk(x))0≤k≤m is

P(x) = eHx0P(x). (17)

Considering the vector ξ(x) =
[
1 x1 · · · xm

]T
and the diagonal matrix

D = diag[a0 a1 · · · am], (18)

an equivalent representation of (17) is

P(x) = eHx0 D ξ(x). (19)

The relation (see [4])

∂x(xk) =

{
−kxk−1, k even
−(n+ k − 1)xk−1, k odd

allows to achieve in matrix form the action of ∂x on the vector ξ(x). In fact,

straightforward calculations lead to ∂x ξ(x) = H̃ξ(x), where H̃ is the matrix
defined by

(H̃)ij =

−(n+ i− 1), i = j + 1 and j even
−i, i = j + 1 and j odd
0, otherwise, i, j = 0, 1, . . . ,m

(20)

(cf. [41], Proposition 3.1).
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Theorem 14. Let D be the matrix defined in (18), with a0 6= 0, and H, H̃ as
defined in (15), (20), respectively. If P(x) is the vector (16), then the following
conditions are equivalent:

1. P(x) is an Appell vector;
2. The matrix D verifies the relation H D+D H̃ = 0.

Proof. (1 ⇒ 2) Applying to both sides of (19) the hypercomplex differential op-
erator we obtain

∂̄P(x) =
1

2
eHx0(H D+D H̃)ξ(x).

The result holds from the monogeneity of the components of P(x).
(2⇒ 1) Under the hypothesis, the monogeneity of the components of P(x) is

obvious. Furthermore, since H D = −D H̃,

∂P(x) =
1

2
eHx0(H D−D H̃)ξ(x)

= HeHx0 D ξ(x) = HP(x),

which is the corresponding matrix representation of (12) in Definition 7. This
completes the proof of the theorem. ut

8.3 Orthogonality

Practical problems of Physics and Engineering require to deal with numerical ap-
proximations of monogenic functions, like for instance, solutions of complicated
differential equations. In this sense, the construction of basis of monogenic func-
tions, in particular, monogenic polynomials, plays a crucial role. As we have seen,
there exists equivalence between the existence of a local Taylor series in terms of
symmetric powers, hypercomplex derivability/differentiability and monogeneity
of Clifford-valued functions. The Fourier expansion can be achieved as well if we
construct an orthonormal basis. Unfortunately, a basis formed by the symmetric
powers is not orthogonal in L2 and the numerical costs for its orthonormalization
are enormous for higher degrees. A different approach was followed in [38] in the
case of 3 dimensions using the concept of Gelfand-Tsetlin bases. The general-
ization of this approach to arbitrary dimensions was done in [37] leading to an
iterative process where the building blocks are the (in general) non-monogenic
C`0,n-valued polynomials

X
(k−j)
n+1,j(x) = F

(k−j)
n+1,j (x) +

j + 1

n+ 2j
F

(k−j−1)
n+1,j−1 (x)x, (21)

where

F
(k−j)
n+1,j (x) =

(j + 1)k−j
(n− 1 + 2j)k−j

|x|k−jC
n−1
2 +j

k−j

(
x0

|x|

)
,

with F
(−1)
n+1,k+1 ≡ 0, x = (x0, . . . , xn) ∈ Rn+1, | . | is the usual Euclidean norm in

Rn+1, and Cνm is the Gegenbauer polynomial of degree m and parameter ν 6= 0.
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The resulting basis of orthogonal 4 monogenic polynomials is formed by the
polynomials

fk,µ = X
(k−kn)
n+1,kn

X
(kn−kn−1)
n,kn−1

· · ·X(k3−k2)
3,k2

ζk2 ,

where ζ := x1−x2 e1e2 and µ is an arbitrary sequence of integers (kn+1, kn, . . . , k2)
such that k = kn+1 ≥ kn ≥ . . . ≥ k2 ≥ 0.

Earlier, in the book [4], multiples of the building blocks (21) appeared when
the CK-extension was applied to the vector-valued polynomials xk−j Pj(x), where
Pj(x) are arbitrarily fixed monogenic polynomials of degree j (j = 0, . . . , k).
Since the resulting polynomials do not have the Appell property, an appropriate
normalization constant was considered by the first three authors in the paper
[40]. More explicitly, the CK-extension was applied to the polynomials

ck,j(n)

(
k

j

)
xk−j Pj(x),

where

ck,j(n) =


(k − j)!!(n+ 2j − 2)!!

(n+ k + j − 1)!!
, if k, j have different parities

ck−1,j(n), if k, j have the same parity

,

for k ≥ 1, j = 0, . . . , k and c0,0(n) = 1. The result is the sequence of orthogonal

monogenic An-valued Appell polynomials
(
X̃

(k−j)
n+1,j

)
k∈N0

, where

X̃
(k)
n+1,j(x) := X

(k−j)
n+1,j(x)Pj(x), x ∈ An. (22)

The (in general) non-monogenic polynomials X
(k−j)
n+1,j can be built by a simple

shift of the coefficients of the monogenic SAP studied in the subsection 8.1. In
fact, the paper [40] shows that

Theorem 15. For all k ∈ N0 and each fixed j (j = 0, . . . , k), it holds

X
(k−j)
n+1,j(x) =

(
k

j

)
Pn+2j
k−j (x), x ∈ An.

Notice that for a fixed k and j = 0, X
(k)
n+1,0 coincide exactly with the SAP Pnk ,

constituting the only monogenic building block in the sequence defined by (22).

This fact is reflected in the monogenic sequence
(
X̃

(k−j)
n+1,j

)
k∈N0

by the choice

P0(x) ≡ 1.

As a consequence of Theorem 15, the polynomials X
(k−j)
n+1,j (j = 0, . . . , k),

explicitly given by (21), admit the simpler representation

X
(k−j)
n+1,j(x) =

(
k

j

) k−j∑
s=0

(
k − j
s

)
cs(n+ 2j)xk−j−s0 xs, x ∈ An,

4 The inner product in L2 is given by (f, g)C̀ 0,n =
∫
Bn+1 f̄ g dλ

n+1, where λn+1 is the
Lebesgue measure and Bn+1 is the unit ball in Rn+1.
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where cs(n+ 2j) (s = 0, . . . k− j, j = 0, . . . , k) are given by (14) with c0(n) = 1.
As it is well known from the theory, any sequence of orthogonal polynomials

satisfies a three-term recurrence relation and a second order differential equation.
The immediate question arises: can we derive similar results for the orthogonal

sequence of monogenic polynomials
(
X̃

(k)
n+1,j : j = 0, . . . , k

)
k∈N0

? The affirmative

answer was done in the paper [40] leading to the following results.

Theorem 16. For all k ∈ N0 and each fixed j (j = 0, . . . , k), the monogenic

polynomials X̃
(k−j)
n+1,j(x), x ∈ An satisfy the three-term type recurrence

(n+ k + 1 + j)(k + 2− j)X̃(k+2)
n+1,j − [(n+ 2k + 2)x0 + x] (k + 2)X̃

(k+1)
n+1,j

+ (k + 2)(k + 1) |x|2 X̃(k)
n+1,j = 0,

X̃
(j)
n+1,j = Pj(x), X̃

(j+1)
n+1,j = (j + 1)(x0 + 1

n+2jx)Pj(x).

Notice that the appearance of a polynomial of second degree as coefficient

of X̃
(k)
n+1,j instead of a constant, like in the classical case, is justified by the fact

that we are dealing with homogeneous polynomials.

Theorem 17. For all k ∈ N0 and each fixed j (j = 0, . . . , k), the monogenic

polynomials X̃
(k)
n+1,j(x), x ∈ An, satisfy the second order differential equation

|x|2∂2y(x)− ((n+ 2k − 2)x0 + x)∂y(x) + (n+ k + j − 1)(k − j)y(x) = 0.
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