19 research outputs found

    Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis.

    Get PDF
    BACKGROUND: Increased circulating plasma urate concentration is associated with an increased risk of coronary heart disease, but the extent of any causative effect of urate on risk of coronary heart disease is still unclear. In this study, we aimed to clarify any causal role of urate on coronary heart disease risk using Mendelian randomisation analysis. METHODS: We first did a fixed-effects meta-analysis of the observational association of plasma urate and risk of coronary heart disease. We then used a conventional Mendelian randomisation approach to investigate the causal relevance using a genetic instrument based on 31 urate-associated single nucleotide polymorphisms (SNPs). To account for potential pleiotropic associations of certain SNPs with risk factors other than urate, we additionally did both a multivariable Mendelian randomisation analysis, in which the genetic associations of SNPs with systolic and diastolic blood pressure, HDL cholesterol, and triglycerides were included as covariates, and an Egger Mendelian randomisation (MR-Egger) analysis to estimate a causal effect accounting for unmeasured pleiotropy. FINDINGS: In the meta-analysis of 17 prospective observational studies (166 486 individuals; 9784 coronary heart disease events) a 1 SD higher urate concentration was associated with an odds ratio (OR) for coronary heart disease of 1·07 (95% CI 1·04-1·10). The corresponding OR estimates from the conventional, multivariable adjusted, and Egger Mendelian randomisation analysis (58 studies; 198 598 individuals; 65 877 events) were 1·18 (95% CI 1·08-1·29), 1·10 (1·00-1·22), and 1·05 (0·92-1·20), respectively, per 1 SD increment in plasma urate. INTERPRETATION: Conventional and multivariate Mendelian randomisation analysis implicates a causal role for urate in the development of coronary heart disease, but these estimates might be inflated by hidden pleiotropy. Egger Mendelian randomisation analysis, which accounts for pleiotropy but has less statistical power, suggests there might be no causal effect. These results might help investigators to determine the priority of trials of urate lowering for the prevention of coronary heart disease compared with other potential interventions. FUNDING: UK National Institute for Health Research, British Heart Foundation, and UK Medical Research Council

    Association of vitamin D status with arterial blood pressure and hypertension risk : a mendelian randomisation study

    Get PDF
    Peer reviewe

    Genetic effects on the timing of parturition and links to fetal birth weight.

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Data availability: Cohorts should be contacted individually for access to raw genotype and phenotype data, as each cohort has different data access policies. Summary statistics from the meta-analysis, excluding 23andMe, are available at the EGG website (https://egg-consortium.org/), and access to the weights for constructing the polygenic score of gestational duration excluding 23andMe are available at the PGS Catalog (https://www.pgscatalog.org/, score ID: PGS002806). Access to the full set, including 23andMe results, can be obtained after approval from 23andMe is presented to the corresponding author or by completion of a Data Transfer Agreement (https://research.23andme.com/dataset-access/), which exists to protect the privacy of 23andMe participants. Access to the Danish National Birth Cohort (phs000103.v1.p1), Hyperglycemia and Adverse Pregnancy Outcome (phs000096.v4.p1) and Genomic and Proteomic Network (phs000714.v1.p1) individual-level phenotype and genetic data can be obtained through dbGaP Authorized Access portal (https://dbgap.ncbi.nlm.nih.gov/dbgap/aa/wga.cgi?page=login). The informed consent under which the data or samples were collected is the basis for determining the appropriateness of sharing data through unrestricted-access databases or NIH-designated controlled-access data repositories. The summary statistics used in this publication other than the one generated are available at the following links: fetal GWAS of gestational duration (http://egg-consortium.org/gestational-duration-2019.html), fetal and maternal GWAS of birth weight (http://egg-consortium.org/birth-weight-2019.html), miscarriage (http://www.geenivaramu.ee/tools/misc_sumstats.zip), age at first birth, estradiol (women), endometriosis, number of live births and age at menarche (http://www.nealelab.is), age at menopause (https://www.reprogen.org), testosterone (women)58, SHBG, testosterone and CBAT (https://doi.org/10.6084/m9.figshare.c.5304500.v1), pelvic organ prolapse and leiomyoma of the uterus (https://www.finngen.fi/fi), polycystic ovary syndrome (https://www.repository.cam.ac.uk/handle/1810/283491 and https://www.finngen.fi/fi) and pre-eclampsia (European Genome-phenome Archive, https://ega-archive.org, EGAD00010001984). Pan-UK Biobank data are available at https://pan.ukbb.broadinstitute.org/. Precomputed LD scores for European populations (https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2) and multi-tissue gene expression precomputed stratified LD scores (https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/Multi_tissue_gene_expr_1000Gv3_ldscores.tgz) are available. eQTL data from GTEx are available at https://gtexportal.org/home/ and from endometrium at http://reproductivegenomics.com.au/shiny/endo_eqtl_rna/. Protein QTL data were obtained from https://www.omicscience.org/apps/pgwas/. Genome Reference Consortium Human Build 37 (hg19) available at https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_000001405.13/.Code availability: Code for this project has been structured using a Snakemake workflow65 and is available at https://github.com/PerinatalLab/metaGWAS. A public release of it has been deposited in Zenodo (https://doi.org/10.5281/zenodo.7311977).The timing of parturition is crucial for neonatal survival and infant health. Yet, its genetic basis remains largely unresolved. We present a maternal genome-wide meta-analysis of gestational duration (n = 195,555), identifying 22 associated loci (24 independent variants) and an enrichment in genes differentially expressed during labor. A meta-analysis of preterm delivery (18,797 cases, 260,246 controls) revealed six associated loci and large genetic similarities with gestational duration. Analysis of the parental transmitted and nontransmitted alleles (n = 136,833) shows that 15 of the gestational duration genetic variants act through the maternal genome, whereas 7 act both through the maternal and fetal genomes and 2 act only via the fetal genome. Finally, the maternal effects on gestational duration show signs of antagonistic pleiotropy with the fetal effects on birth weight: maternal alleles that increase gestational duration have negative fetal effects on birth weight. The present study provides insights into the genetic effects on the timing of parturition and the complex maternal-fetal relationship between gestational duration and birth weight.Swedish Research CouncilSwedish Research CouncilResearch Council of NorwayResearch Council of NorwayMarch of Dimesunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of HealthNorwegian Diabetes AssociationNils Normans minnegaveNorwegian Research CouncilMedical Research CouncilBritish Heart FoundationResearch Council of NorwayBritish Heart FoundationDaniel B. Burke Chair for Diabetes Research and NIHCHOPEuropean Regional Development Fund and the programme Mobilitas PlussWellcome Trust and Royal Society Sir Henry Dale FellowshipWellcome TrustOak FoundationFonds de la recherche du Québec en santéUS National Institutes of HealthNovo Nordisk FoundationNovo Nordisk FoundationNovo Nordisk Foundatio

    Absence of robust ischemic preconditioning by five 1-minute total umbilical cord occlusions in fetal sheep.

    No full text
    Contains fulltext : 57626.pdf (publisher's version ) (Closed access)OBJECTIVE: To determine to what extent a series of five 1-minute total umbilical cord occlusions, intended to induce ischemic preconditioning (IP), affects the physiologic responses to a 10-minute total umbilical cord occlusion (damaging insult [DI]) 1 hour later and provides cardio- and neuroprotection. METHODS: In 14 chronically catheterized late gestation fetal sheep (127-131 days' gestation), we performed a 10-minute total umbilical cord occlusion (DI), preceded by a series of five 1-minute total cord occlusions with 2-minute intervals (5CO, n = 7) or sham occlusions (n = 7) 1 hour prior to DI. RESULTS: The 5CO induced a reduction in the arterial partial pressure of oxygen (Po(2)) from 21 +/-1 to 14 +/-3 Torr, arterial O(2) content from 6.9 +/- 0.4 to 3.1 +/- 0.7 vol%, and increases in the partial pressure of carbon dioxide (Pco(2)) from 46 +/- 2 to 58 +/- 3 Torr, and [H(+)] from 43 +/- 1 to 54 +/- 2 nM. 5CO reduced fetal heart rate from 178 +/- 6 to 151 +/- 6 beats per minute (bpm), and increased arterial pressure from 45 +/- 1 to 57 +/- 2 mmHg, cerebral blood flow (CBF) from 100 +/- 3 to 129 +/- 10%, and cerebral heat production (H(brain)) from 25 +/- 2 to 29 +/- 1% degrees C. The responses to DI were not significantly different between the groups without and with 5CO; values for Po(2) were 5.6 +/- 1.5 and 5.8 +/- 1.9 Torr, O(2) content 0.6 +/- 0.1 and 0.8 +/- 0.1 vol%, lactate 10.7 +/- 0.7 and 10.8 +/- 0.7 mM, fetal heart rate 97 +/- 5 and 87 +/- 8 bpm, mean arterial pressure 22 +/- 3 and 21 +/- 2 mmHg, CBF 50 +/- 10 and 36 +/- 5%, and H(brain) 7.0 +/- 1.4 and 5.9 +/- 1.1% degrees C, respectively, except for Pco(2) (126 +/- 4 and 112 +/- 2 Torr) and [H(+)] (126 +/- 3 and 114 +/- 3 nM). Histologic proof of cardio- or neuroprotection by 5CO could not be obtained because five fetuses died before they were to be killed at day 3 after the experiment; two fetuses in the 5CO group demonstrated major histologic damage of myocardium and brain. CONCLUSION: In the late gestation fetal sheep, a series of five 1-minute total umbilical cord occlusions did not result in major changes in physiologic responses to a hypoxic-ischemic DI 1 hour later. In addition, the procedure did not result in robust cardio- and neuroprotection, in contrast to IP reported in adults
    corecore