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Genetic effects on the timing of parturition 
and links to fetal birth weight

The timing of parturition is crucial for neonatal survival and infant health. 
Yet, its genetic basis remains largely unresolved. We present a maternal 
genome-wide meta-analysis of gestational duration (n = 195,555), identifying 
22 associated loci (24 independent variants) and an enrichment in genes 
differentially expressed during labor. A meta-analysis of preterm delivery 
(18,797 cases, 260,246 controls) revealed six associated loci and large 
genetic similarities with gestational duration. Analysis of the parental 
transmitted and nontransmitted alleles (n = 136,833) shows that 15 of the 
gestational duration genetic variants act through the maternal genome, 
whereas 7 act both through the maternal and fetal genomes and 2 act only 
via the fetal genome. Finally, the maternal effects on gestational duration 
show signs of antagonistic pleiotropy with the fetal effects on birth weight: 
maternal alleles that increase gestational duration have negative fetal effects 
on birth weight. The present study provides insights into the genetic effects 
on the timing of parturition and the complex maternal–fetal relationship 
between gestational duration and birth weight.

In humans, similar to mammals broadly, the timing of delivery is crucial 
for neonatal survival and health. Preterm delivery is the world-leading 
direct cause of death in neonates and children under five years of age1. 
Although the rate of neonatal mortality has substantially decreased 
in recent years, the reduction attributable to preterm delivery is one 
of the lowest among the major causes of mortality2. This fact partly 
reflects the relatively poor knowledge of the processes governing the 
timing of delivery in humans. Parturition may be initiated by a diver-
sity of biological and mechanical pathways. Some of these are part of 
the physiological timing process, whereas others may override preg-
nancy maintenance with fail-safe mechanisms (for example, in the 
case of uterine infection)3. The diversity of the mechanisms has led to 
the conceptualization of preterm delivery as a syndrome4, with vari-
ous pathophysiological processes contributing to its etiology. Both 
maternal and fetal genomes are involved in these mechanisms. Yet, 
genetic studies have identified only a handful of loci associated with 
the timing of parturition5,6.

Gestational duration is the major determinant of birth weight (that 
is, the longer the gestation, the heavier the newborn). At the same time, 
uterine load is one of the known triggers of parturition7, evidenced 
by half of twin pregnancies delivering preterm8. Both the maternal 

and fetal genomes contribute to birth weight as well, as revealed in 
recent genome-wide association studies (GWAS)9,10, and over evolu-
tionary time may have even conflicted on gestational duration and 
birth weight, as proposed in the hypothesis of the genetic conflicts of 
pregnancy11. This hypothesis suggests that the maternal genome favors 
slightly shorter gestations and lower birth weight, whereas the fetal 
genome favors the opposite. Coadaptation theory, instead, suggests 
that maternal and fetal genomes may invest resources to achieve an 
optimal gestational duration or birth weight that increases fitness12. 
These known contributions, potential conflicts and coadaptation of 
gestational duration and birth weight may ultimately create a complex 
relationship between the two.

What and how distinct are the maternal genetic effects on gesta-
tional duration and preterm delivery? What is the relationship between 
fetal growth and gestational duration? Is there evidence suggesting 
maternal–fetal coadaptation on these traits? To address these ques-
tions, we conducted a GWAS meta-analysis of gestational duration 
and preterm and post-term delivery in >190,000 maternal samples 
with spontaneous onset of delivery. We further analyzed these results 
using the parental transmitted and nontransmitted alleles in >135,000 
parent-offsprings.
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We observed a modest genetic correlation (rg = −0.62; 95% confi-
dence interval (CI) = −0.72, −0.51) between gestational duration and 
preterm delivery, suggesting similarities between the two phenotypes 
(Supplementary Figs. 9 and 10). Post-term delivery, instead, showed 
a perfect genetic correlation with gestational duration (rg = 1.17; 95% 
CI = 0.93, 1.41), suggesting no differences in the maternal genetic effects 
on such traits.

Resolving maternal–fetal effect origin
The genetic effects on pregnancy traits may be driven by two correlated 
genomes: the maternal and the fetal. To investigate whether the ges-
tational duration signals originate in either or both genomes, we used 
phased genotype data to estimate the effects of the parental transmit-
ted and nontransmitted alleles from 136,833 parent-offspring trios or 
mother-child duos (Fig. 1b, Supplementary Table 5 and Extended Data 
Fig. 2; the maternal samples of these duos/trios were part of the GWAS 
meta-analysis). Based on pattern similarity using Gaussian mixture 
model-based clustering10, SNPs were assigned to three large groups. 
Of the 24 index variants, 15 had the highest probability of a maternal 
effect, seven of both maternal and fetal effects (five with opposite effect 
directions, and the remaining two with the same direction), and two 
were grouped as having a fetal-only effect: the first, independent of 
the parent of origin (TFAP4, probability = 0.57), and the second limited 
to the maternal transmitted allele (EEFSEC). Caution should be taken 
when interpreting the latter considering the low probability (0.47).

The index SNP at the ADCY5 locus (rs28654158) had both maternal 
and fetal effects on gestational duration with the same effect direction. 
Interestingly, a SNP also located in the first intron of ADCY5 harbors 
maternal and fetal effects on birth weight, but in opposite directions, 
attributed to the fetal insulin hypothesis9,10. The two index SNPs for 
gestational duration (rs28654158) and birth weight (rs11708067) are 
located 50 kb apart from each other and are in low LD (r2 < 0.2). The 
birth weight SNP, also implicated in diabetes, likely acts through ADCY5 
(ref. 24), but it is unknown whether the gestational duration variant also 
acts through the same gene, although it colocalizes with ADCY5 gene 
expression in the uterus (Supplementary Table 4). Despite being physi-
cally close to each other, differences between the two loci are evident 
in the traits they colocalize with. The gestational duration locus also 
affects fat-mass-related traits, whereas the birth weight locus affects 
glucose-related ones (Extended Data Fig. 3).

The only fetal index SNP identified to date in a GWAS (rs7594852; 
minor allele frequency = 0.49; beta = 0.37 days; 95% CI = 0.22, 0.51)6 
clustered as having a fetal-only effect (Supplementary Table 5, probabil-
ity = 1), independent of the parent of origin (beta paternal transmitted 
allele = −0.42, P = 2.7 × 10−6).

Polygenic score of gestational duration and preterm delivery
We built polygenic scores for gestational duration and preterm delivery 
using the corresponding GWAS results in the MoBa cohort (including 
the X chromosome) using LDpred2 (ref. 25) and estimated their effect 
on both traits. The polygenic score for gestational duration explains 
2.2% of its variance (beta = 0.22 days per z-score; 95% CI = 0.02, 0.03; 
n = 3,943). The lowest decile had a mean gestational duration of 278 
days (95% CI = 278, 279), whereas the highest decile had a mean of 283 
days (95% CI = 282, 284) (Fig. 2). The polygenic score was also statisti-
cally significantly associated with preterm delivery (Supplementary 
Table 6 and Supplementary Fig. 11; odds ratio = 0.994; 95% CI = 0.990, 
0.997) with an area under the curve of 0.61 (95% CI = 0.55, 0.67). For 
comparison, a polygenic score for preterm delivery was built using 
the same samples as above. This polygenic score was also significantly 
associated with preterm delivery (Supplementary Table 6 and Supple-
mentary Fig. 11; odds ratio = 1.005, 95% CI = 1.001, 1.009), with effect 
estimate similar to that obtained for the gestational duration polygenic 
score (after matching the direction). This reflects the genetic similarity 
between gestational duration and preterm delivery.

Results
Genome-wide association analyses
We conducted a GWAS meta-analysis of gestational duration in 
195,555 women of recent European ancestry (Supplementary Table 1), 
a fourfold increase in sample size compared to the largest published 
maternal GWAS of gestational duration to date5. After quality control 
(QC), genetic variants at 22 loci were associated with gestational 
duration at genome-wide significance (Fig. 1, Supplementary Table 
2 and Supplementary Fig. 1). Approximate conditional and joint 
(COJO) analysis revealed two conditionally independent signals at 
EBF1 and KCNAB1 gene regions. Sixteen of the loci did not overlap 
with any previously reported gestational duration-associated locus5. 
Effect sizes were relatively small, ranging from 7 (HIVEP3/EDN2) to 27 
(MRPS22) hours of gestation per allele (average duration of gestation 
= 282 days, 40.3 weeks). Heterogeneity in the effect estimates was 
limited to loci previously identified (EBF1, WNT4, ADCY5, EEFSEC 
and AGTR2), likely due to winner’s curse13 (Supplementary Table 2 
and Supplementary Fig. 2). Out-of-sample reanalysis of previously 
reported gestational duration-associated lead single-nucleotide 
polymorphisms (SNPs) (n = 6) showed that all four that were avail-
able after QC replicate at nominal significance (Supplementary 
Table 3). In addition, all six loci (±250 kb from lead SNP) replicated 
at suggestive evidence.

To prioritize candidate genes, we performed colocalization 
analysis14 with cis-expression quantitative trait loci (cis-eQTLs) in 
induced pluripotent stem cells15, endometrium16, uterus, vagina and 
ovary17 (Supplementary Table 4). cis-eQTLs for seven protein-coding 
(OPRL1, ZBTB38, RGS19, TET3, COL27A1, CRISPLD1 and ADCY5) and 
four non-coding genes colocalized with gestational duration. Further-
more, colocalization analysis with blood protein QTLs18 showed several  
trans associations: ZBTB38 with three proteins, and TCEA2/OPRL1 
and WNT4 with one each. Particularly interesting are the associations 
with OPRL1 and POMC, which play a role in modulating nociception 
and pain perception; in vitro studies in tissues from pregnant rats and 
humans suggest that the administration of nociceptin inhibits uterine 
contractions, mediated by the OPRL1 receptors19,20.

RNA tissue-specific enrichment of top genes highlighted the endo-
metrium and other female reproductive and smooth muscle tissues 
(Supplementary Fig. 3), results further supported at the genome-wide 
scale using stratified linkage disequilibrium (LD)-score regression (Sup-
plementary Fig. 4). Previous genetic studies have suggested a critical 
role of the decidua (endometrium) in the timing of parturition, indicat-
ing an effect early in pregnancy21. Using stratified LD-score regression, 
we show that the heritability of gestational duration is enriched in 
regions harboring genes differentially expressed during labor (enrich-
ment = 1.7, P = 7.1 × 10−7; Extended Data Fig. 1)22, suggesting the SNPs 
associated with gestational duration may as well act during labor.

Stratified LD-score regression (Supplementary Fig. 5) revealed an 
enrichment in background selection, superenhancers, CpG content, 
H3K23ac and DNA methylation. Using the mosaic pipeline23, we con-
firm that gestational duration loci have diverse evolutionary histories, 
including evolutionary conservation, excess population differentiation 
and negative selection (Supplementary Fig. 6).

We also performed a GWAS meta-analyses of preterm delivery 
(controls, delivery between 39 and 42 gestational weeks, n = 260,246; 
cases, delivery <37 completed weeks, n = 18,797) and post-term delivery  
(controls, delivery between 39 and 42 gestational weeks = 115,307, 
cases >42 completed weeks, n = 15,972) (Fig. 1a, Supplementary Table 2  
and Supplementary Figs. 7 and 8). We observed a lower number of  
associated loci: six and one for preterm and post-term delivery, respec-
tively. COJO analysis identified a secondary conditionally indepen dent 
SNP associated with preterm delivery at the EBF1 gene region. We 
identified only one locus associated with preterm delivery (rs312777, 
P = 6.6 × 10−9) that showed weak evidence of association with gesta-
tional duration (P = 3.9 × 10−3).
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Pleiotropy between sex hormones and the timing of parturition
To examine the potential shared genetic basis between the timing of 
parturition and other traits, we estimated the genetic correlations 
between 14 female reproductive traits and the maternal effects on 
gestational duration and preterm delivery (Fig. 3). These estimates 
were generally comparable, with the latter being consistently higher. 
Calculated bioavailable testosterone (CBAT; rg = 0.40; 95% CI = 0.26, 
0.54), testosterone (rg = 0.35; 95% CI = 0.19, 0.51) and sex hormone 

binding globulin (SHBG; rg = −0.16; 95% CI = −0.27, −0.06) in women 
were modestly genetically correlated with preterm delivery, whereas 
there was little genetic correlation with levels of the same hormones 
in men (Supplementary Table 7). We observed a positive genetic cor-
relation between preterm delivery and the number of live births, and 
although this finding may be counterintuitive, it is in line with a positive 
genetic correlation reported between miscarriage and the number of 
live births26. The genetic correlation between preterm delivery and the 
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number of live births was twice as high in cohorts where the women’s 
whole reproductive history was available (rg = 0.27; 95% CI = 0.11, 0.43) 
compared to cohorts based on a random pregnancy (rg = 0.13; 95% 
CI = 0.00, 0.26), indicating an increased probability of preterm delivery 
with an increasing number of live births. We also detected a negative 
genetic correlation with age at first birth and age at menopause.

Genetic correlations can arise due to pleiotropy or due to a trait 
being causally upstream of the other. To distinguish between these 
situations, we used a latent causal variable (LCV)27 model between sex 
hormones and preterm delivery and gestational duration (Supple-
mentary Table 8). We observed evidence for full or nearly full genetic 
causality of CBAT, testosterone and SHBG on preterm delivery (0.7 
< GCP ≤ 0.8), but not on gestational duration (0.4 ≤ GCP < 0.5). In a 
two-sample Mendelian randomization analysis, the concentrations 
of these sex hormones (Supplementary Tables 9 and 10), including 
a set of variants that have consistent effects on testosterone, but no 
aggregate effects on SHBG28, were associated with gestational dura-
tion and preterm delivery. Although the MR-Egger intercept was not 
significantly different from 0 (Supplementary Table 10 and Extended 
Data Fig. 4), colocalization analyses across the genome confirmed that 
distinct variants underlie the associations for sex hormones and the 
timing of parturition (Supplementary Fig. 12).

Using the parental transmitted and nontransmitted alleles in 
individual-level parent-offspring data from Iceland and Norway 
(deCODE, MoBa and HUNT; n = 46,105 parent-offsprings; Supple-
mentary Table 11), we observed a nominally significant association 
between the maternal nontransmitted alleles polygenic scores for 
CBAT and testosterone and gestational duration.

Testosterone and SHBG levels have a complex genetic link with the 
timing of parturition, likely explained by partial causality, as pointed 
out by the LCV analysis on gestational duration.

Gestational duration partially mediates maternal effects on 
birth weight
We sought to understand the genetic relationship between gestational 
duration and birth weight and how the interplay between the maternal 
and fetal genomes affect this relationship. We used published summary 
statistics of birth weight (<15% of samples adjusted for gestational 

duration) derived from two different models9: maternal-only effect 
(adjusted by fetal effects) and fetal-only effect (adjusted by mater-
nal effects). These models were obtained using weighted linear 
modeling and provide unbiased estimates for the maternal and fetal 
effects, respectively. The fetal effects on gestational duration were 
obtained from a previously published GWAS6. The more recent GWAS 
meta-analysis of fetal growth10 had >40% of samples adjusted for gesta-
tional duration, which is the reason why we did not use it in this section.

The maternal effects on gestational duration are strongly corre-
lated with those on birth weight (Supplementary Fig. 13; rg = 0.65; 95% 
CI = 0.54, 0.75). Conversely, neither the maternal (rg = −0.05; −0.15, 
0.04) nor the fetal (rg = −0.02; 95% CI = −0.15, 0.11) effects on gestational 
duration were genetically correlated with the fetal-only effects on birth 
weight. We suggest the maternal effects on birth weight are at least 
partially mediated by gestational duration, whereas the effects of the 
fetus on birth weight are not.

We then tested the extent of this mediation. Using multitrait COJO 
analysis29, we conditioned the genetic effects on birth weight on the 
maternal effects on gestational duration. After conditioning, the mater-
nal effects on birth weight changed substantially: the SNP heritability 
was reduced by 53% (P = 9.4 × 10−7; Supplementary Table 12), and the 
effect size of 87 suggestive SNPs decreased (Fig. 4a; median relative 
difference = −11%, Wilcoxon rank-sum test P = 1.3 × 10−8). Applying the 
same method on genome-wide significant variants classified with a 
maternal-only effect on birth weight9 provided very similar results 
(Supplementary Table 13 and Supplementary Fig. 14). This finding 
was further replicated using individual-level data by directly adjust-
ing for gestational duration in the linear model on birth weight (using 
genotypes in Icelandic data and the maternal nontransmitted alleles in 
MoBa, Norway; Supplementary Table 13 and Supplementary Fig. 14). In 
contrast, for fetal effects on birth weight, conditioning on gestational 
duration did not change the effect estimates or the heritability (Fig. 4a 
and Supplementary Table 12 for results with 108 suggestive SNPs, and 
Supplementary Table 13 and Supplementary Fig. 14 with genome-wide 
significant variants classified as having a fetal-only effect9).

In summary, although the maternal effects on birth weight are 
partially driven by gestational duration, we found no evidence for this 
for the fetal effects on birth weight.

40 + 5

40 + 4

40 + 3
G

es
ta

tio
na

l d
ur

at
io

n 
(w

ee
ks

)

PGS quantiles

40 + 2

40 + 1

40 + 0

39 + 6

39 + 5

39 + 4

1 2 3 4 5 6 7 8 9 10

Fig. 2 | Polygenic prediction of gestational duration. Mean (95% CI) gestational duration for each decile of the gestational duration polygenic score (n = 3,943). Only 
spontaneous deliveries were considered. PGS, polygenic score.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | April 2023 | 559–567 563

Article https://doi.org/10.1038/s41588-023-01343-9

The maternal genome drives the association between 
gestational duration and birth weight
It is widely accepted that longer gestations lead to heavier newborns. 
Here, we sought to obtain causal estimates of the effect of gestational 
duration on birth weight.

We used the index SNPs from our discovery GWAS and the effect 
estimates from the maternal nontransmitted alleles as genetic instru-
ments in a two-sample Mendelian randomization analysis (Fig. 4b and 
Supplementary Fig. 15) on the maternal-only effects on birth weight 
(derived using a weighted linear model9). The maternal nontrans-
mitted gestational duration-increasing alleles were associated with  
higher birth weight (beta = 0.06 z-scores per day; 95% CI = 0.05, 0.08; 
P = 1.7 × 10−16). The estimated effect (approximately 23 g per day)  
is concordant with the phenotypic association between gestational 
duration and birth weight (25 g per day in 18,452 samples from the 
MoBa cohort). We observed no effect from the paternal transmitted 
gestational duration-increasing alleles on birth weight. The LCV model 

confirmed a full or nearly full causal (GCP = 0.6, P = 0.002; Supplemen-
tary Table 8) effect of gestational duration on birth weight.

Maternal effects on gestational duration and fetal effects on 
birth weight exhibit signs of antagonistic pleiotropy
First, we evaluated the impact of fetal growth on gestational duration 
by instrumenting fetal growth using 68 SNPs with fetal-only effect on  
birth weight (n = 35,280 and 48,741 parent-offsprings; Supplementary 
Table 14)9. Higher paternally transmitted birth weight score was associ-
ated with shorter duration of gestation, and the estimated effect was 
larger when estimated using the last menstrual period (beta = −1.9 
days per z-score, P = 4.0 × 10−4) than ultrasound. This result supports 
previous evidence showing faster fetal growth is associated with 
shorter duration of gestation30. To investigate whether this was due 
to antagonistic pleiotropy between the fetal effects on birth weight 
and the maternal effects on gestational duration, we assessed the  
relation between birth weight-increasing alleles and maternal effects 
on gestational duration. The fetal birth weight-increasing alleles  
were not associated with maternal effects on gestational duration  
(Supplementary Table 15), suggesting that the results presented  
above are likely not due to antagonistic pleiotropic effects.

Next, we used summary statistics to investigate potential pleio-
tropy between the genetic effects on gestational duration and fetal 
birth weight. Using methods borrowed from Mendelian randomization 
analysis, we evaluated the association between the maternal gestational 
duration-increasing alleles and the fetal effects on birth weight. We 
observe that the alleles that increase gestational duration through a 
maternal effect tend to reduce birth weight through a fetal effect (Fig. 4c  
and Supplementary Table 15). Interestingly, this effect was not limited 
to the maternal transmitted alleles (beta = −0.02 z-scores per day; 95% 
CI = −0.03, −0.01; P = 3.4 × 10−4) but was also observed for the maternal 
nontransmitted gestational duration-increasing alleles (beta = −0.01 
z-scores per day; 95% CI = −0.02, −0.01; P = 6.2 × 10−3). The paternal 
transmitted gestational duration-increasing alleles were not associ-
ated with fetal-only effects on birth weight (Supplementary Table 15).

Discussion
The timing of parturition is crucial for neonatal survival and health. Yet, 
discovery of maternal and fetal genetic effects lags behind that of other 
pregnancy traits such as birth weight9 and fetal growth10. In this GWAS 
meta-analysis of parturition timing, we identified 17 loci not previously 
reported, one of which was more strongly linked to preterm delivery 
than to gestational duration. The results support large similarities 
in the maternal genetic effects on gestational duration and preterm 
delivery. By including parent-offspring data with a similar sample size 
to that of the discovery GWAS, we were able to discern maternal from 
fetal effects with high certainty for most index SNPs. Finally, the results 
show a complex genetic relationship between the maternal and fetal 
genomes on gestational duration and birth weight.

Our understanding of the molecular signals governing the tim-
ing of parturition in humans has not advanced significantly. Previous 
genomic evidence suggests a critical role of the decidua21, denoting an 
effect on the timing of parturition as early as implantation. We report 
that the SNP heritability of gestational duration is enriched in genes 
differentially expressed during labor in the myometrium. We suggest 
the maternal effects on the duration of gestation may as well act during 
labor, for instance, by inhibiting uterine contractions. Genetic studies  
of gestational duration may prove useful in the discovery of drug 
targets as tocolytic agents or for labor induction. At the same time, 
the genetic effects on gestational duration and preterm delivery are 
largely similar; this is opposed to the heterogeneity observed at the 
phenotypic and transcriptomic levels31,32. As an example, although the 
polygenic score of gestational duration is still inadequate for clinical 
use, it had a similar effect on preterm delivery as a polygenic score of 
preterm delivery itself.
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Gestational duration is the major determinant of birth weight. 
Although the maternal genome affects offspring birth weight through 
many different causal pathways (for example, maternal glucose  
levels9,10), the effects are partly mediated by gestational duration. 
This has implications for the interpretation of GWAS of birth weight 
and downstream analyses, such as Mendelian randomization. In con-
trast, the fetal genetic effects on birth weight are not mediated by 
gestational duration, suggesting the fetal genome mainly acts on 
birth weight by modulating fetal growth. Interestingly, the maternal 
gestational duration-increasing alleles have negative fetal effects on 
birth weight, likely reflecting antagonistic pleiotropy. The opposite 
was not true; fetal birth weight-increasing alleles were not associated 
with maternal effects on gestational duration. We speculate that the 
fetal effects on birth weight have likely co-adapted to increase the 

fitness of the fetus in pregnancies genetically predisposed to a shorter 
duration. It has been suggested that both gestational duration and 
birth weight are under balancing selection, with intermediate values 
of these traits having highest fitness3,33. As exemplified here, this 
could lead to antagonistic pleiotropy favoring the coadaptation of 
maternal and fetal effects to attain optimal gestational duration and 
birth weight12.

The presented results have several limitations. First, we analyzed 
data from participants of European ancestry. Over 70% of the samples 
were obtained from Nordic countries, with genotype data linked to 
the Medical Birth Registers; in these countries, the preterm delivery 
rate is one of the lowest in the world1. Studying diverse ancestries 
would propel the identification of novel loci associated with gesta-
tional duration and aid in fine-mapping efforts, as has been previously  
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Fig. 4 | Genetic relationship between gestational duration and birth 
weight. a, Distribution of the relative difference in effect size before and after 
conditioning the effect on birth weight by the maternal effect on gestational 
duration using approximate multitrait COJO analysis. After conditioning, we  
split the genome into approximately LD-independent regions and selected  
the SNPs with the lowest P value on birth weight (P < 5 × 10−6) from each region  
(n SNPs maternal effect = 87; n SNPs fetal effect = 108). Fetal, pink; maternal,  
blue. b,c, Scatterplot for two-sample Mendelian randomization analysis for  
the maternal effect of gestational duration on birth weight (b, maternal effects;  
c, fetal effects). Each dot represents one of the gestational duration index SNPs. 
Effect sizes and standard errors (horizontal or vertical error bars) from the index 

SNPs for gestational duration derived from the maternal nontransmitted alleles 
were obtained from the meta-analysis of parent-offspring data (n = 136,833). The 
maternal-only and the fetal-only effects on birth weight were extracted from a 
previous GWAS meta-analysis (n = 210,248 and 297,356, respectively). The x-axis 
shows the SNP effect of the maternal nontransmitted alleles on gestational 
duration (days), and the y-axis the effect on birth weight (z-scores). Horizontal 
and vertical error bars represent the standard error. The solid line depicts the 
inverse-variance weighted method estimate, and the dashed line the MR-Egger 
estimate. Colors represent the clustering of the SNP effects on gestational 
duration, performed using model-based clustering.
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shown for other traits34. Second, to understand the relationship 
between gestational duration and birth weight, we used summary 
statistics from a previously published birth weight GWAS that 
was partially adjusted for gestational duration (<15% of samples)  
and excluded preterm deliveries, which is likely to affect our analy-
ses by reducing their power. Third, we assumed a causal association 
between gestational duration and birth weight. Although this is 
known to be true to some extent (that is, longer gestations are linked 
to heavier newborns), pleiotropy between gestational duration  
and birth weight could be very well at play. Fourth, phenotypic 
heterogeneity between cohorts (for example, gestational dura-
tion estimation method) may have hindered the identification of  
additional signals.

In conclusion, the present results provide evidence of large genetic 
similarities between gestational duration and preterm delivery and 
further our understanding of the complex relationship between gesta-
tional duration and birth weight. Particularly, we show that the mater-
nal effects on birth weight are largely driven by gestational duration 
and that the maternal and fetal genomes have antagonistic pleiotropic 
effects on gestational duration and birth weight.
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Methods
Phenotype definition
In this study, we included pregnancies with a singleton live birth and a 
spontaneous onset of delivery: medically initiated deliveries (either by 
induction or planned cesarean section) were excluded or part of con-
trols for preterm delivery. Gestational duration in days was estimated 
using either the last menstrual period date or ultrasound. We excluded 
pregnancies lasting <140 days (20 completed weeks) or >310 days (44 
completed weeks), as well as women with health complications prior to 
or during pregnancy and congenital fetal malformations. Spontaneous 
preterm delivery was defined as a spontaneous delivery <259 days (37 
completed gestational weeks) or by using the ICD-10 O60 code, and 
controls as a delivery occurring between 273 and 294 days (39 and 
42 gestational weeks). Post-term delivery was defined as a delivery 
occurring >294 days (42 completed weeks) or ICD-10 O48 code, and 
controls as a spontaneous delivery between 273 and 294 days (39 and 
42 gestational weeks). Given the perfect genetic correlation between 
gestational duration and post-term delivery GWAS, and the small power 
of the latter, all downstream analyses are focused on gestational dura-
tion and preterm delivery.

Study cohorts and individual-level GWAS
This study consists of cohorts participating in the Early Growth Genet-
ics (EGG) Consortium and the Norwegian Mother, Father and Child 
Cohort study (MoBa)35, deCODE genetics10, Trøndelag Health Study 
(HUNT)36, Danish Blood Donor Study (DBDS)37, the Estonian Genome 
Center of the University of Tartu (EGCUT)38 and summary statistics 
from FinnGen39 and from a previous GWAS of gestational duration 
and preterm delivery performed using 23andMe data5. A total of 18 
different cohorts (Supplementary Table 1) provided GWAS data under 
an additive model for meta-analysis for the maternal genome, result-
ing in 195,555 samples for gestational duration, 276,218 samples for 
preterm delivery (n cases = 18,797) and 131,279 samples for post-term 
delivery (n cases = 15,972) of recent European ancestries (indicated 
by principal component analysis). For binary outcomes (preterm and 
post-term deliveries), only cohorts with an effective sample size >100 
were included. Detailed description of the cohorts included can be 
found in the Supplementary Note. All study participants provided a 
signed informed consent, and all research studies were approved by 
the relevant institutional ethics review boards (Supplementary Note).

Each individual cohort applied specific QC procedures, data impu-
tation and analysis independently following the consortium recom-
mendations. Unless more stringent, samples were excluded if genotype 
call rate <95%, autosomal mean heterozygosity >3 standard deviations 
from the cohort mean, sex mismatch or major recent ancestry was 
other than European (HapMap central European). Genetic variants 
were excluded if genotype call rate <98%, Hardy-Weinberg equilibrium 
P value < 1 × 10−6 or minor allele frequency <1%. Reference panels for 
imputation were either 1000 Genomes Project40, Haplotype Reference 
Consortium41, 10KUK or a combination of one of the mentioned refer-
ence panels and own whole-genome sequencing data (deCODE, HUNT, 
DBDS and FinnGen). Each individual cohort performed a GWAS using an 
additive linear regression model adjusted for, at least, genetic principal 
components or relationship matrix on autosomal chromosomes and 
chromosome X. Summary statistics for each individual cohort were 
stored centrally and underwent QC procedures before meta-analysis 
(Supplementary Note).

Meta-analysis of GWASs
After QC, individual-cohort GWAS summary statistics were pooled 
using fixed-effects inverse-variance weighted meta-analysis with 
METAL42 without genomic control correction. We also performed an 
analysis of heterogeneity of effects (Supplementary Table 2; I2 statistic). 
After meta-analysis, we removed genetic variants reported in less than 
half the number of available samples for each phenotype, resulting 

in 9-10 million genetic variants. For example, the variant observed in 
the largest number of samples for gestational duration was available 
in 195,555 individuals; only variants reported in at least 97,778 were 
kept. Genomic inflation factors were low for all three phenotypes (Sup-
plementary Table 16; gestational duration λ = 1.14, preterm delivery 
λ = 1.08 and post-term delivery λ = 1.05). LD-score regression intercepts 
were substantially lower than genomic inflation factors, suggesting that 
the inflation in test statistics was mostly due to polygenicity (Supple-
mentary Table 16). Test statistics were not further adjusted for genomic 
control for any of the phenotypes. If not otherwise stated, all analyses 
presented in this study are two-sided tests.

Initially, we naively defined independent loci based on physical 
distance, where SNPs within 250 kb from the index SNP were considered 
to be at the same locus. Novel loci were defined as loci not overlapping 
previously reported gestational duration loci in the largest GWAS 
performed to date5. Finally, we used conditional analysis to resolve 
independent loci (see below).

Conditional analysis
We looked for conditionally independent associations within each 
locus using approximate conditional and joint (COJO) analysis43 imple-
mented in Genome-wide Complex Trait Analysis (GCTA) software44. We 
ran a stepwise model selection (-cojo-slct) to identify conditionally 
independent genetic variants at P < 5 × 10−8 for each of the genome-wide 
significant loci (using a radius of 1.5 Mb from the index SNP). Overlap-
ping loci were merged into a single locus (only two loci overlapped, at 
3q23). LD between genetic variants was estimated from 19,092 maternal 
samples from the Norwegian Mother, Father and Child Cohort, after 
excluding variants with imputation INFO score <0.4. We converted the 
reference panel from BGEN files to hard-called PLINK binary format 
(.bed). As per default in COJO, genetic variants >10 Mb apart were 
assumed to be in complete linkage equilibrium.

Gene prioritization
To prioritize genes at the gestational duration loci identified, we set 
the baseline as the nearest protein-coding gene to the index SNP at 
each independent locus. Although naive, this approach has been con-
sistently shown to outperform other single metrics for locus-to-gene 
mapping45,46. Next, we performed colocalization analysis for cis-eQTLs 
in 1,367 human induced pluripotent stem cell lines from the i2QTL 
resource (±250 kb from gene start and stop position)15, endometrium 
(± 250 kb from gene start and stop position)16 and uterus, vagina and 
ovary from GTEx (±1 Mb around transcription start site)17. None of the 
variants we identified were in LD (r2 > 0.6) with missense variants. To 
complement the prioritization of genes, we queried each of the index 
SNPs for blood protein QTLs18 (both in cis and trans). For all index SNPs 
that were protein QTLs (P < 5 × 10−6), we performed colocalization 
analyses (±1.5 Mb around the index SNP). We excluded the HLA region 
due to its large pleiotropic effects.

Colocalization
We utilized genetic colocalization to identify pleiotropic effects 
between gestational duration and expression and protein quantita-
tive trait locus (see Gene prioritization) and with other female and 
reproductive traits. To this end, we applied COLOC14, which evaluates, 
in a Bayesian statistical framework, whether a single locus from two 
different phenotypes best fits a model where the associations are due 
to a single shared variant or distinct variants in close LD (Supplemen-
tary Note).

Prior probabilities for each for the non-null hypotheses were set 
as suggested by Wallace (prior probabilities that a random SNP in the 
loci is associated with phenotype A, phenotype B, or both phenotypes, 
1 × 10−4, 1 × 10−4, and 5 × 10−6, respectively), which are considered more 
conservative than the ones set by default47. Strong evidence of colo-
calization was defined as a posterior probability of colocalization >0.9.

http://www.nature.com/naturegenetics
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Enrichment analysis
We tested for enrichment based on top loci and genome-wide using 
partitioned LD-score regression. To test for overrepresentation in 
tissue-specific RNA expression (Human Protein Atlas, RNA consensus 
tissue gene data)48, a Wilcoxon rank-sum test was performed on nor-
malized RNA for genes within our set (above-mentioned) and all other 
genes. Significance for this test was set at Bonferroni correction for the 
number of tissues (P < 0.05/61), and suggestive evidence at P < 0.1/61. 
At the genome-wide level, we performed partitioned heritability using 
LD-score regression to test for enrichment in 97 different annota-
tions49,50, tissue-specific RNA expression using 205 different tissues/
cell types51, using precomputed partitioned LD-scores for subjects of 
recent European ancestry (baseline-LD model v2.2) and for enrichment 
in regions harboring genes differentially expressed during labor in 
single cells from myometrium22.

Genetic correlations
We estimated genetic correlations by performing LD-score regression52 
locally using precomputed LD-scores from 1000 Genomes Project 
samples of recent European ancestry. The MHC region (chr6:28477797-
33448354) was removed prior to running LD-score regression.

Resolving effect origin
To classify the identified index SNPs for gestational duration as hav-
ing maternal, fetal, or maternal and fetal origin, we performed an 
association analysis using the parental transmitted and nontransmit-
ted alleles on gestational duration. We used phased genotype data 
(that is estimated haplotypes) in parent-offsprings or mother-child 
duos to infer the parent-of-origin of the genotyped/imputed alleles 
as previously described30. Once the transmitted allele was identified, 
the nontransmitted maternal allele was extracted. Briefly, parental 
origin of each allele was inferred using genotypes of relatives, refer-
ence cohort data, or distributions of genotypes within the cohort and 
LD measurements. Different methods were used for phasing in each of 
the cohorts providing data for this analysis10,53–56 (Supplementary Table 
17). Details of the phasing strategy used by each cohort are described 
in Supplementary Note.

For each index SNP, we fit the following linear regression model:

gestational duration = MnT +MT + PT + PCs,

where MnT and MT refer to the maternal nontransmitted and trans-
mitted alleles respectively, and PT refers to the paternal transmitted 
alleles. The latter is interpreted as a fetal-only genetic effect, whereas 
the effect of the maternal nontransmitted allele is a maternal-only 
genetic effect. We first estimated the effects of the index SNPs in each 
birth cohort separately; effect sizes were then combined through 
fixed-effect meta-analysis, totaling a sample size of 136,833 (Supple-
mentary Note and Supplementary Table 17). To classify the identified 
genetic variants into classes with similar patterns of effect, we used 
model-based clustering10. Variants were clustered based on estimated 
effects of the transmitted and nontransmitted parental alleles into 
five clusters. Two clusters assume fetal effect only, one with effect 
independent of parent of origin, and one where the effect is limited 
to the maternally transmitted allele; a cluster with maternal effect 
only; and two clusters with both maternal and fetal effects, either in 
opposite or same direction.

Locus pleiotropy at 3q21
After identifying locus pleiotropy between the maternal effect on 
gestational duration and the fetal-only effect on birth weight at the 
ADCY5 gene region, we set out to investigate differences between the 
two top SNPs in their colocalization with other traits. Phenome-wide 
colocalization for the two regions was performed using summary statis-
tics from FinnGen (data freeze 5) and Pan UK Biobank data (https://pan.

ukbb.broadinstitute.org, in participants of recent European ancestry; 
Supplementary Note).

Female reproductive traits
We obtained summary statistics for several female reproductive traits 
from different sources (minimum sample size 10,000). We included 
summary statistics from the following traits: miscarriage26, gesta-
tional duration (fetal genome)6, age at first birth, age at menarche 
(Neale lab, http://www.nealelab.is), age at menopause57, number of 
live births (Neale lab, http://www.nealelab.is), testosterone58, CBAT58, 
SHBG58, estradiol (women, Neale lab, http://www.nealelab.is), pelvic 
organ prolapse (FinnGen), polycystic ovary syndrome (59 and FinnGen), 
endometriosis (Neale lab, http://www.nealelab.is), leiomyoma uterus 
(FinnGen) and pre-eclampsia60. For polycystic ovary syndrome, we 
meta-analyzed summary statistics from the largest published GWAS59 
and FinnGen. We estimated genetic correlations between gestational 
duration and preterm delivery and these traits, and latent causal vari-
able analysis between sex hormones (testosterone, CBAT and SHBG) 
and gestational duration and preterm delivery. We further explored 
causality using two-sample Mendelian randomization and inspected 
whether the effects originated in the maternal or the fetal genome (see 
below, ‘Mendelian randomization’). Finally, when one trait is causally 
upstream of the other, it is expected that the two traits would share a 
causal variant at some of the trait-associated loci. To test for this at the 
genome-wide scale, we performed colocalization analysis between 
sex hormones and gestational duration and preterm delivery using 
approximately LD-independent regions61.

Gestational duration and preterm delivery polygenic scores
To obtain an independent sample for training and validation of a poly-
genic score, the meta-analyses for gestational duration were rerun, 
excluding the MoBa cohort. These new meta-analysis results were used 
as the base data sets to calculate the polygenic scores. After apply-
ing the same exclusion criteria as used for the study samples in the 
meta-analysis, and removing duplicated samples and those with a 
kinship of greater than 0.125, the MoBa cohort was randomly split, 
using 80% (n = 15,768) as the training cohort and the remaining 20% 
(n = 3,942) as the validation cohort. LDpred2 was used for the calcula-
tion of the polygenic scores25. A description of polygenic score training 
can be found in Supplementary Note.

Polygenic score validation
We constructed polygenic scores converted to z-scores to enable com-
parison of the gestational duration and the preterm delivery polygenic 
scores. To test the performance of the polygenic score, a linear regres-
sion was conducted for gestational duration by the polygenic score. A 
second model was used that adjusted for five principal components 
and genotyped batch. R2 was calculated for the models to quantify 
variance explained.

The utility of the polygenic score for the prediction of preterm 
delivery was also assessed. Gestational duration was dichotomized into 
preterm delivery (<37 weeks) or full term (≥39 weeks and <41 weeks). 
Two models were analyzed, one assessing just the polygenic score and 
a second adjusting for five principal components and genotype batch. 
Receiver operating characteristic, area under the curve were calculated 
for each model and used as assessment of diagnostic accuracy.

Mendelian randomization
We performed Mendelian randomization to study the effects of gesta-
tional duration (maternal) on birth weight (maternal) and the effects 
of fetal growth (fetal effect on birth weight) and sex hormones on 
gestational duration.

To study the effect of gestational duration on birth weight, we 
employed two-sample Mendelian randomization. The 24 index SNPs (22 
autosomal SNPs) from the present gestational duration meta-analysis 
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and the effect sizes from the parental transmitted and nontransmitted 
alleles analysis were used to instrument gestational duration. Birth 
weight was instrumented using summary statistics from a previous 
GWAS of offspring’s birth weight with minimal adjustment by gesta-
tional duration (<15% of samples)9.

We assessed the effect of sex hormones (testosterone, SHBG and 
CBAT) on gestational duration using two-sample Mendelian rand-
omization and instrumenting the hormones using a polygenic score 
for the parental transmitted and nontransmitted alleles. For each sex 
hormone, we obtained a list of independent SNPs genome-wide associ-
ated with these traits (Supplementary Table 9) by performing GWAS 
clumping (r2 > 0.001) using the following PLINK command:

plink–bfile <1000 Genomes > –clump {GWAS summary statis-
tics}–clump-r2 0.001–clump-kb 1000–clump-p1 5e-8–clump-p2 1e-5.

We also used a set of SNPs associated with testosterone, but with no 
aggregated effects on SHBG, as clustered in28. Such variants were used 
as instrumental variables in the two-sample Mendelian randomization 
analysis and to construct the polygenic score for the parental transmit-
ted and nontransmitted alleles. The current meta-analysis results were 
employed as outcome for the two-sample Mendelian randomization 
analysis (inverse-variance weighted and MR-Egger). We subsequently 
constructed the polygenic score for the maternal transmitted and 
nontransmitted alleles and the paternal transmitted alleles in 46,105 
parent-offsprings from Iceland and Norway. We estimated the effects 
of the maternal nontransmitted (MnTPGS) and transmitted (MTPGS) and 
paternal transmitted (PTPGS) alleles polygenic score using the follow-
ing linear model:

gestational duration = MnTPGS +MTPGS + PTPGS + PCs + batch.

Again, effects from each of the three data sets (Iceland, MoBa and 
HUNT) were combined using fixed-effect inverse-variance weighted 
meta-analysis.

To understand the impact of fetal growth on gestational duration, 
we used individual genetic data from 35,280 (ultrasound-gestational 
duration) and 48,741 (last menstrual period-gestational duration) 
parent-offsprings from Iceland, the MoBa cohort and HUNT. To instru-
ment fetal growth, we used 68 SNPs with fetal-only effect on birth 
weight as classified in Warrington et al. using Structural Equation 
Modeling9. Based on these 68 SNPs, we constructed a fetal growth 
polygenic score for the parental transmitted and nontransmitted alleles 
and regressed these on gestational duration (estimated by ultrasound 
or last menstrual period, separately). We estimated the effects of the 
maternal nontransmitted (MnTPGS) and transmitted (MTPGS) and pater-
nal transmitted (PTPGS) alleles polygenic scores as above.

Effect estimates from each of the three data sets (Iceland, MoBa 
and HUNT) were pooled using fixed-effects inverse-variance weighted 
meta-analysis.

Multitrait conditional analysis
GCTA was used to perform bi-directional multitrait COJO (mtCOJO)29 
analysis using summary statistics. The gestational duration GWAS  
was conditioned on the birth weight GWAS and vice versa (Supple-
mentary Note), using birth weight summary statistics from the largest  
GWAS meta-analysis of birth weight9. We did not condition on  
the fetal effects on gestational duration due to a lack of power in the 
fetal GWAS6.

Maternal–fetal pleiotropy on gestational duration and birth 
weight
We further investigated what are the fetal effects on birth weight for 
the maternal gestational duration-increasing alleles, and the maternal 
effects on gestational duration for the fetal birth weight-increasing 
alleles. To study this, we borrowed the inverse-variance weighted analy-
sis from Mendelian randomization, but using the effects of two distinct 

genomes, the maternal and fetal. We caution that this should not be 
interpreted under a causal framework.

To understand what the maternal gestational duration-raising 
alleles do to birth weight when present in the fetus, we used the effect 
sizes and standard errors of the parental transmitted and nontransmit-
ted alleles for the 22 autosomal index SNPs on gestational duration and 
assessed its effects on the same SNPs with a fetal-only effect on birth 
weight. To understand what the fetal birth weight-raising alleles do to 
gestational duration when present in the mother, we used the effect 
sizes and standard errors of 68 autosomal SNPs associated with fetal 
effects on birth weight and the effect sizes and standard errors from 
the current maternal GWAS of gestational duration.

Evolutionary analysis
To examine the evolutionary history of the regions identified in the 
GWAS meta-analysis, we ran the significant variants through the 
MOSAIc pipeline23. This pipeline is designed to detect enrichment 
in evolutionary signals using a variety of sequence-based metrics of 
selection (Supplementary Note).

Variant annotation
Variants were annotated using Ensembl’s Variant Effect Predictor (hg19) 
command line tool62. Physical coordinates of protein-coding genes 
were obtained from the UCSC Table Browser63, and were matched to 
the index SNPs using bedtools v2.29.2 (ref. 64).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Cohorts should be contacted individually for access to raw genotype 
and phenotype data, as each cohort has different data access policies. 
Summary statistics from the meta-analysis, excluding 23andMe, are 
available at the EGG website (https://egg-consortium.org/), and access 
to the weights for constructing the polygenic score of gestational dura-
tion excluding 23andMe are available at the PGS Catalog (https://www.
pgscatalog.org/, score ID: PGS002806). Access to the full set, includ-
ing 23andMe results, can be obtained after approval from 23andMe 
is presented to the corresponding author or by completion of a Data 
Transfer Agreement (https://research.23andme.com/dataset-access/), 
which exists to protect the privacy of 23andMe participants. Access 
to the Danish National Birth Cohort (phs000103.v1.p1), Hypergly-
cemia and Adverse Pregnancy Outcome (phs000096.v4.p1) and 
Genomic and Proteomic Network (phs000714.v1.p1) individual-level 
phenotype and genetic data can be obtained through dbGaP Author-
ized Access portal (https://dbgap.ncbi.nlm.nih.gov/dbgap/aa/wga.
cgi?page=login). The informed consent under which the data or sam-
ples were collected is the basis for determining the appropriateness of 
sharing data through unrestricted-access databases or NIH-designated 
controlled-access data repositories. The summary statistics used in this 
publication other than the one generated are available at the following 
links: fetal GWAS of gestational duration (http://egg-consortium.org/
gestational-duration-2019.html), fetal and maternal GWAS of birth 
weight (http://egg-consortium.org/birth-weight-2019.html), miscar-
riage (http://www.geenivaramu.ee/tools/misc_sumstats.zip), age at 
first birth, estradiol (women), endometriosis, number of live births and 
age at menarche (http://www.nealelab.is), age at menopause (https://
www.reprogen.org), testosterone (women)58, SHBG, testosterone and 
CBAT (https://doi.org/10.6084/m9.figshare.c.5304500.v1), pelvic 
organ prolapse and leiomyoma of the uterus (https://www.finngen.
fi/fi), polycystic ovary syndrome (https://www.repository.cam.ac.uk/
handle/1810/283491 and https://www.finngen.fi/fi) and pre-eclampsia 
(European Genome-phenome Archive, https://ega-archive.
org, EGAD00010001984). Pan-UK Biobank data are available at  
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https://pan.ukbb.broadinstitute.org/. Precomputed LD scores for 
European populations (https://data.broadinstitute.org/alkesgroup/
LDSCORE/eur_w_ld_chr.tar.bz2) and multi-tissue gene expression 
precomputed stratified LD scores (https://alkesgroup.broadinstitute.
org/LDSCORE/LDSC_SEG_ldscores/Multi_tissue_gene_expr_1000Gv3_
ldscores.tgz) are available. eQTL data from GTEx are available at  
https://gtexportal.org/home/ and from endometrium at
http://reproductivegenomics.com.au/shiny/endo_eqtl_rna/. Protein 
QTL data were obtained from https://www.omicscience.org/apps/
pgwas/. Genome Reference Consortium Human Build 37 (hg19) 
available at https://www.ncbi.nlm.nih.gov/data-hub/genome/
GCF_000001405.13/.

Code availability
Code for this project has been structured using a Snakemake workflow65 
and is available at https://github.com/PerinatalLab/metaGWAS. A pub-
lic release of it has been deposited in Zenodo (https://doi.org/10.5281/
zenodo.7311977).
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Extended Data Fig. 1 | SNP-heritability enrichment of gestational duration 
for genes differentially expressed during labor in different cell types of the 
myometrium and overall. LD-score regression was used to partition heritability 
and estimate the heritability enrichment for each cell type and overall. We 
calculated LD scores (European individuals from phase 3 of the 1000 Genomes 
project) for sets of genes differentially expressed at labor (± 100 kb) for each cell 
type separately and for the overall set of genes differentially expressed in the 

myometrium. Each dot represents a cell type, the x-axis shows the heritability 
enrichment, and the y-axis the -log10(P-value) of a two-sided test. Larger dots 
denote significant heritability enrichment after Bonferroni correction for 
multiple comparisons (that is, number of cell types; P-value < 0.05/15). See Online 
Methods for a cautionary note regarding the comparison of different cell-type 
enrichment P-values.
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Extended Data Fig. 2 | Ternary plot representing the probabilities of having 
maternal, fetal or maternal, and fetal effect for each index SNP. The sum of 
all probabilities for each index SNP is 1. Lines are colored according to the axis 
they belong to. All points in a horizontal line (green) have the same probability of 
‘fetal-only effect’, points on a line (yellow) parallel to the right side of the triangle 
have the same probability of a ‘Maternal-only effect’, and lines (black) parallel 
to the left side of the triangle have the same probability of a ‘Maternal and fetal 
effect’. Probabilities were obtained using Gaussian Mixture models clustering 

using the effect size and standard error estimates of the parental transmitted 
and nontransmitted alleles (n = 136,833 parent-offsprings). While five different 
clusters were identified, the fetal effect was broken down into two groups 
(parent-of-origin and independent of parent-of-origin), and the maternal and 
fetal effects also into two groups (same or opposite maternal and fetal direction). 
For this figure, probability of a ‘Fetal only effect’ is the sum of the two groups with 
fetal effect, and ‘Maternal and fetal effect’ is the sum of the probabilities of the 
two clusters with maternal and fetal effects.
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Extended Data Fig. 3 | Colocalization between the maternal effects on 
gestational duration (green) and fetal effects on birth weight (yellow) 
and other phenotypes from UK Biobank and FinnGen at the ADCY5 locus. 
Posterior probability of colocalization between the maternal effect on 
gestational duration (rs28654158) and the fetal-only effect on birth weight 

(rs11708067) with traits from UK Biobank and FinnGen. Only traits with a 
posterior probability of colocalization ≥ 0.01 are plotted, and names are only 
shown if the posterior probability is > 0.5. Maternal locus on gestational duration 
was centered around rs28654158 (± 1.5 Mb), and the fetal locus on birth weight 
around rs11708067 (± 1.5 Mb).
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Extended Data Fig. 4 | Association between testosterone levels (women) 
and maternal effect on gestational duration. Scatterplot for two-sample 
Mendelian randomization analysis for the effect of testosterone in nmol/L 
(x-axis, independent of SHBG, n = 230,454) on gestational duration in days 

(y-axis, maternal effect, n = 195,555). Each dot represents one of the testosterone 
associated SNPs. Horizontal and vertical error bars represent the 95% CI. The gray 
line depicts the inverse-variance weighted method estimate, and the gray-dashed 
line the MR-Egger estimate.
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