44 research outputs found
The use of spirometry in a primary care setting
Elizabeth A Blain, Timothy J CraigPenn State Hershey Medical Center, Hershey, PA, USAObjective: To determine the use of spirometry in family practice, internal medicine, and pediatric outpatient settings.Methods: Data were collected from 45 outpatient offices in the central Pennsylvania area via phone survey that asked a set of four questions: 1) Do you have spirometry in your office? 2) Do you use spirometry for asthma patients? 3) In what situation do you use spirometry for? 4) Do you use spirometry more for chronic obstructive pulmonary disease (COPD) or asthma? Results: It was found that pediatricians used spirometry 66% of the time, family practitioners 47% of the time, and internal medicine practitioners 60% of the time. Of those who did not use spirometry, 94% stated that they refer to a hospital if they required spirometry and 6% referred to subspecialists if the patient required spirometry. 10% of pediatricians performed the test on each asthma visit, otherwise the others used it only for exacerbations or as a baseline. No internists used spirometry regularly for asthma patients, and 22% used it more for COPD. In family practice only 14% used spirometry routinely at each visit for asthma patients.Conclusions: Pediatricians used spirometry more often in the outpatient setting than other specialists, followed closely by internal medicine physicians. Family practice physicians were the least likely to use spirometry. Multiple barriers seemed to prevent routine use of spirometry, but no one barrier accounted for the majority.Keywords: spirometry, asthma, primary car
3D immuno-confocal image reconstruction of fibroblast cytoskeleton and nucleus architecture
Computational models of cellular structures generally rely on simplifying approximations and assumptions that limit biological accuracy. This study presents a comprehensive image processing pipeline for creating unified threeâdimensional (3D) reconstructions of the cell cytoskeletal networks and nuclei. Confocal image stacks of these cellular structures were reconstructed to 3D isosurfaces (Imaris), then tessellations were simplified to reduce the number of elements in initial meshes by applying quadric edge collapse decimation with preserved topology boundaries (MeshLab). Geometries were remeshed to ensure uniformity (Instant Meshes) and the resulting 3D meshes exported (ABAQUS) for downstream application. The protocol has been applied successfully to fibroblast cytoskeletal reorganisation in the scleral connective tissue of the eye, under mechanical load that mimics internal eye pressure. While the method herein is specifically employed to reconstruct immunofluorescent confocal imaging data, it is also more widely applicable to other biological imaging modalities where accurate 3D cell structures are required
Delayed reorganisation of F-actin cytoskeleton and reversible chromatin condensation in scleral fibroblasts under simulated pathological strain
Mechanical loading regulates the functional capabilities of the ocular system, particularly in the sclera (âwhite of the eyeâ) â the principal load-bearing tissue of the ocular globe. Resident fibroblasts of the scleral eye wall are continuously subjected to fluctuating mechanical strains arising from eye movements, cerebrospinal fluid pressure and, most influentially, intra-ocular pressure (IOP). Whilst fibroblasts are hypothesised to actively participate in scleral biomechanics, to date limited information has been reported on how the macroscopic stresses and strains are transmitted via their cytoskeletal networks. In this study, the effect of applying either a âphysiological loadâ (simulating healthy IOP) or a âpathological loadâ (simulating an elevated glaucomatous IOP) to bovine scleral fibroblasts, as a model of human glaucoma, was conducted to characterise cytoskeletal organisation, chromatin condensation and cell dimensions using immunofluorescence confocal microscopy. Quantification of cell parameters and cytoskeletal element anisotropy were subsequently performed using FibrilTool, and chromatin condensation parameter assessment through a bespoke MATLAB script. The novel findings suggest that physiological load-induced F-actin rearrangement is transient, whereas pathological load, recapitulating in vivo glaucomatous IOP levels, had a reversible and inhibitory influence on remodelling of the cytoskeletal architecture and, further, induction of chromatin condensation. Ultimately, this could compromise cell behaviour. These findings could provide valuable insight into the mechanism(s) used by scleral fibroblasts to mechanically adapt to support biomechanical tissue integrity, and how it could be potentially modified for therapeutic avenues targeting mechanically mediated ocular pathologies such as glaucoma
Optimizing comparative genomic hybridization probes for genotyping and SNP detection in Plasmodium falciparum
AbstractMicroarray-based comparative genomic hybridizations (CGH) interrogate genomic DNA to identify structural differences such as amplifications and deletions that are easily detected as large signal aberrations. Subtle signal deviations caused by single nucleotide polymorphisms (SNPs) can also be detected but is challenged by a high AT content (81%) in P. falciparum. We compared genome-wide CGH signal to sequence polymorphisms between parasite strains 3D7, HB3, and Dd2 using NimbleGen microarrays. From 23,191 SNPs (excluding var/rif/stevor genes), our CGH probe set detected SNPs with >99.9% specificity but low (<10%) sensitivity. Probe length, melting temperature, GC content, SNP location in the probe, mutation type, and hairpin structures affected SNP sensitivity. Previously unrecognized variable number tandem repeats (VNTRs) also were detected by this method. These findings will guide the redesign of a probe set to optimize an openly available CGH microarray platform for high-resolution genotyping suitable for population genomics studies
Recommended from our members
Uncovering the Thermodynamics of Monomer Binding for RNA Replication
The nonenzymatic replication of primordial RNA is thought to have been a critical step in the origin of life. However, despite decades of effort, the poor rate and fidelity of model template copying reactions have thus far prevented an experimental demonstration of nonenzymatic RNA replication. The overall rate and fidelity of template copying depend, in part, on the affinity of free ribonucleotides to the RNA primerâtemplate complex. We have now used 1H NMR spectroscopy to directly measure the thermodynamic association constants, Kas, of the standard ribonucleotide monophosphates (rNMPs) to native RNA primerâtemplate complexes. The binding affinities of rNMPs to duplexes with a complementary single-nucleotide overhang follow the order C > G > A > U. Notably, these monomers bind more strongly to RNA primerâtemplate complexes than to the analogous DNA complexes. The relative binding affinities of the rNMPs for complementary RNA primerâtemplate complexes are in good quantitative agreement with the predictions of a nearest-neighbor analysis. With respect to G:U wobble base-pairing, we find that the binding of rGMP to a primerâtemplate complex with a 5âČ-U overhang is approximately 10-fold weaker than to the complementary 5âČ-C overhang. We also find that the binding of rGMP is only about 2-fold weaker than the binding of rAMP to 5âČ-U, consistent with the poor fidelity observed in the nonenzymatic copying of U residues in RNA templates. The accurate Ka measurements for ribonucleotides obtained in this study will be useful for designing higher fidelity, more effective RNA replication systems
Quantification of collagen fiber structure using second harmonic generation imaging and twoâdimensional discrete Fourier transform analysis: application to the human optic nerve head
Second harmonic generation (SHG) microscopy is widely used to image collagen fiber microarchitecture due to its high spatial resolution, optical sectioning capabilities and relatively nondestructive sample preparation. Quantification of SHG images requires sensitive methods to capture fiber alignment. This article presents a twoâdimensional discrete Fourier transform (DFT)âbased method for collagen fiber structure analysis from SHG images. The method includes integrated periodicity plus smooth image decomposition for correction of DFT edge discontinuity artefact, avoiding the loss of peripheral image data encountered with more commonly used windowing methods. Outputted parameters are as follows: the collagen fiber orientation distribution, aligned collagen content and the degree of collagen fiber dispersion along the principal orientation. We demonstrate its application to determine collagen microstructure in the human optic nerve head, showing its capability to accurately capture characteristic structural features including radial fiber alignment in the innermost layers of the bounding sclera and a circumferential collagen ring in the midâstromal tissue. Higher spatial resolution rendering of individual lamina cribrosa beams within the nerve head is also demonstrated. Validation of the method is provided in the form of correlative results from wideâangle Xâray scattering and application of the presented method to other fibrous tissues
The SOLAS air-sea gas exchange experiment (SAGE) 2004
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 58 (2011): 753-763, doi:10.1016/j.dsr2.2010.10.015.The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating
gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in
high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the
expansive Subpolar Zone of the southern oceans. This paper provides a general introduction and
summary of the main experimental findings. The release site was selected from a pre-voyage desktop
study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the
south-east of New Zealand and the experiment conducted between mid-March and mid-April 2004. In
common with other mesoscale iron addition experiments (FeAXâs), SAGE was designed as a
Lagrangian study quantifying key biological and physical drivers influencing the air-sea gas exchange
processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton
bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled
volume (patch) of ocean and the air-sea tracer exchange at the 10âs of kmâs scale, in conjunction with
the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the
gas exchange coefficient on windspeed that is widely applicable and describes air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties, and wind speed were quantified to further assist the development of gas exchange models for high-wind environments.
There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton
within the first day following iron addition, but in contrast to other FeAXâs, rates of net primary
production and column-integrated chlorophyll a concentrations had only doubled relative to the
unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions
totalling 1.1 tonne Fe2+, this was a very modest response compared to the other mesoscale iron
enrichment experiments. An investigation of the factors limiting bloom development considered co-
limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst
incident light levels and the initial Si:N ratio were the lowest recorded in all FeAXâs to date, there was
only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition
was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton
growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing
were all considered as factors that prevented significant biomass accumulation. In line with the limited
response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAXâs dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAXâs. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.SAGE was jointly funded through
the New Zealand Foundation for Research, Science and Technology (FRST) programs
(C01X0204) "Drivers and Mitigation of Global Change" and (C01X0223) "Ocean
Ecosystems: Their Contribution to NZ Marine Productivity." Funding was also provided for
specific collaborations by the US National Science Foundation from grants OCE-0326814
(Ward), OCE-0327779 (Ho), and OCE 0327188 OCE-0326814 (Minnett) and the UK Natural
Environment Research Council NER/B/S/2003/00282 (Archer). The New Zealand
International Science and Technology (ISAT) linkages fund provided additional funding
(Archer and Ziolkowski), and the many collaborator institutions also provided valuable
support
Repeatability and validity of a standardised maximal step-up test for leg function-a diagnostic accuracy study
<p>Abstract</p> <p>Background</p> <p>Objectively assessed physical performance is a strong predictor for morbidity and premature death and there is an increasing interest in the role of sarcopenia in many chronic diseases. There is a need for robust and valid functional tests in clinical practice. Therefore, the repeatability and validity of a newly developed maximal step up test (MST) was assessed.</p> <p>Methods</p> <p>The MST, assessing maximal step-up height (MSH) in 3-cm increments, was evaluated in 60 healthy middle-aged subjects, 30 women and 30 men. The repeatability of MSH and the correlation between MSH and isokinetic knee extension peak torque (IKEPT), self-reported physical function (SF-36, PF), patient demographics and self-reported physical activity were investigated.</p> <p>Results</p> <p>The repeatability between occasions and between testers was 6 cm. MSH (range 12-45 cm) was significantly correlated to IKEPT, (<it>r </it>= 0.68, <it>P </it>< 0.001), SF-36 PF score, (<it>r </it>= 0.29, <it>P </it>= 0.03), sex, age, weight and BMI. The results also show that MSH above 32 cm discriminates subjects in our study with no limitation in self-reported physical function.</p> <p>Conclusions</p> <p>The standardised MST is considered a reliable leg function test for clinical practice. The MSH was related to knee extension strength and self-reported physical function. The precision of the MST for identification of limitations in physical function needs further investigation.</p
Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300 km South Pacific Zonal Section (153°Eâ150°W)
Iron, phosphate and nitrate are essential nutrients for phytoplankton growth and hence their supply into the surface ocean controls oceanic primary production. Here, we present a GEOTRACES zonal section (GP13; 30-33oS, 153oE-150oW) extending eastwards from Australia to the oligotrophic South Pacific Ocean gyre outlining the concentrations of these key nutrients. Surface dissolved iron concentrations are elevated at >0.4 nmol L-1 near continental Australia (west of 165°E) and decreased eastward to â€0.2 nmol L-1 (170oW-150oW). The supply of dissolved iron into the upper ocean (<100m) from the atmosphere and vertical diffusivity averaged 11 ±10 nmol m-2 d-1. In the remote South Pacific Ocean (170oW-150oW) atmospherically sourced iron is a significant contributor to the surface dissolved iron pool with average supply contribution of 23 ± 17% (range 3% to 55%). Surface-water nitrate concentrations averaged 5 ±4 nmol L-1 between 170oW and 150oW whilst surface-water phosphate concentrations averaged 58 ±30 nmol L-1. The supply of nitrogen into the upper ocean is primarily from deeper waters (24-1647 ÎŒmol m-2 d-1) with atmospheric deposition and nitrogen fixation contributing <1% to the overall flux, in remote South Pacific waters. The deep water N:P ratio averaged 16 ±3 but declined to <1 above the deep chlorophyll maximum (DCM) indicating a high N:P assimilation ratio by phytoplankton leading to almost quantitative removal of nitrate. The supply stoichiometry for iron and nitrogen relative to phosphate at and above the DCM declines eastward leading to two biogeographical provinces: one with diazotroph production and the other without diazotroph production