171 research outputs found

    Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea.

    Get PDF
    The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.The SAXS data collection was supported by funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement N°283570). Research in the N.P.R. laboratory is funded by the Medical Research Council [Career Development Award G0701443]. Research in the L.P. laboratory is funded by a Wellcome Trust Senior Fellowship Award in Basic Biomedical Sciences [grant number 08279/Z/07/Z]. Work in the L.P. and N.P.R. laboratories is also supported by an Isaac Newton Trust Research Grant, and S.M.B. is supported by a BBSRC Doctoral Training Grant.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ncomms650

    Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius.

    Get PDF
    In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.N.P.R. is grateful to the Department of Biochemistry and the Isaac Newton Trust (Trinity College, Cambridge) for supporting this study. The N.P.R. laboratory is funded by the Medical Research Council [Career Development Award G0701443], and also by an Isaac Newton Trust Research Grant. S.M.B. is supported by a BBSRC Doctoral Training Grant [RG53842]. L.P. and M.L.K were funded by a Wellcome Trust Senior Fellowship Award in Basic Biomedical Sciences [grant no. 08279/Z/07/Z]. S.V.A. was supported by intramural funds of the Max Planck Society.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms916

    Clustered Coding Variants in the Glutamate Receptor Complexes of Individuals with Schizophrenia and Bipolar Disorder

    Get PDF
    Current models of schizophrenia and bipolar disorder implicate multiple genes, however their biological relationships remain elusive. To test the genetic role of glutamate receptors and their interacting scaffold proteins, the exons of ten glutamatergic ‘hub’ genes in 1304 individuals were re-sequenced in case and control samples. No significant difference in the overall number of non-synonymous single nucleotide polymorphisms (nsSNPs) was observed between cases and controls. However, cluster analysis of nsSNPs identified two exons encoding the cysteine-rich domain and first transmembrane helix of GRM1 as a risk locus with five mutations highly enriched within these domains. A new splice variant lacking the transmembrane GPCR domain of GRM1 was discovered in the human brain and the GRM1 mutation cluster could perturb the regulation of this variant. The predicted effect on individuals harbouring multiple mutations distributed in their ten hub genes was also examined. Diseased individuals possessed an increased load of deleteriousness from multiple concurrent rare and common coding variants. Together, these data suggest a disease model in which the interplay of compound genetic coding variants, distributed among glutamate receptors and their interacting proteins, contribute to the pathogenesis of schizophrenia and bipolar disorders

    A survey of rare coding variants in candidate genes in schizophrenia by deep sequencing

    Get PDF
    We would like to thank the participants and patients who enabled this research.Peer reviewedPublisher PD

    Immunocompetent 3D Model of Human Upper Airway for Disease Modeling and In Vitro Drug Evaluation

    Get PDF
    The development of more complex in vitro models for the assessment of novel drugs and chemicals is needed because of the limited biological relevance of animal models to humans as well as ethical considerations. Although some human-cell-based assays exist, they are usually 2D, consist of single cell type, and have limited cellular and functional representation of the native tissue. In this study, we have used biomimetic porous electrospun scaffolds to develop an immunocompetent 3D model of the human respiratory tract comprised of three key cell types present in upper airway epithelium. The three cell types, namely, epithelial cells (providing a physical barrier), fibroblasts (extracellular matrix production), and dendritic cells (immune sensing), were initially grown on individual scaffolds and then assembled into the 3D multicell tissue model. The epithelial layer was cultured at the air–liquid interface for up to four weeks, leading to formation of a functional barrier as evidenced by an increase in transepithelial electrical resistance (TEER) and tight junction formation. The response of epithelial cells to allergen exposure was monitored by quantifying changes in TEER readings and by assessment of cellular tight junctions using immunostaining. It was found that epithelial cells cocultured with fibroblasts formed a functional epithelial barrier at a quicker rate than single cultures of epithelial cells and that the recovery from allergen exposure was also more rapid. Also, our data show that dendritic cells within this model remain viable and responsive to external stimulation as evidenced by their migration within the 3D construct in response to allergen challenge. This model provides an easy to assemble and physiologically relevant 3D model of human airway epithelium that can be used for studies aiming at better understanding lung biology, the cross-talk between immune cells, and airborne allergens and pathogens as well as drug delivery

    Biomarker-guided antibiotic stewardship in suspected ventilator-associated pneumonia (VAPrapid2) : a randomised controlled trial and process evaluation

    Get PDF
    Background Ventilator-associated pneumonia is the most common intensive care unit (ICU)-acquired infection, yet accurate diagnosis remains difficult, leading to overuse of antibiotics. Low concentrations of IL-1ÎČ and IL-8 in bronchoalveolar lavage fluid have been validated as effective markers for exclusion of ventilator-associated pneumonia. The VAPrapid2 trial aimed to determine whether measurement of bronchoalveolar lavage fluid IL-1ÎČ and IL-8 could effectively and safely improve antibiotic stewardship in patients with clinically suspected ventilator-associated pneumonia. Methods VAPrapid2 was a multicentre, randomised controlled trial in patients admitted to 24 ICUs from 17 National Health Service hospital trusts across England, Scotland, and Northern Ireland. Patients were screened for eligibility and included if they were 18 years or older, intubated and mechanically ventilated for at least 48 h, and had suspected ventilator-associated pneumonia. Patients were randomly assigned (1:1) to biomarker-guided recommendation on antibiotics (intervention group) or routine use of antibiotics (control group) using a web-based randomisation service hosted by Newcastle Clinical Trials Unit. Patients were randomised using randomly permuted blocks of size four and six and stratified by site, with allocation concealment. Clinicians were masked to patient assignment for an initial period until biomarker results were reported. Bronchoalveolar lavage was done in all patients, with concentrations of IL-1ÎČ and IL-8 rapidly determined in bronchoalveolar lavage fluid from patients randomised to the biomarker-based antibiotic recommendation group. If concentrations were below a previously validated cutoff, clinicians were advised that ventilator-associated pneumonia was unlikely and to consider discontinuing antibiotics. Patients in the routine use of antibiotics group received antibiotics according to usual practice at sites. Microbiology was done on bronchoalveolar lavage fluid from all patients and ventilator-associated pneumonia was confirmed by at least 104 colony forming units per mL of bronchoalveolar lavage fluid. The primary outcome was the distribution of antibiotic-free days in the 7 days following bronchoalveolar lavage. Data were analysed on an intention-to-treat basis, with an additional per-protocol analysis that excluded patients randomly assigned to the intervention group who defaulted to routine use of antibiotics because of failure to return an adequate biomarker result. An embedded process evaluation assessed factors influencing trial adoption, recruitment, and decision making. This study is registered with ISRCTN, ISRCTN65937227, and ClinicalTrials.gov, NCT01972425. Findings Between Nov 6, 2013, and Sept 13, 2016, 360 patients were screened for inclusion in the study. 146 patients were ineligible, leaving 214 who were recruited to the study. Four patients were excluded before randomisation, meaning that 210 patients were randomly assigned to biomarker-guided recommendation on antibiotics (n=104) or routine use of antibiotics (n=106). One patient in the biomarker-guided recommendation group was withdrawn by the clinical team before bronchoscopy and so was excluded from the intention-to-treat analysis. We found no significant difference in the primary outcome of the distribution of antibiotic-free days in the 7 days following bronchoalveolar lavage in the intention-to-treat analysis (p=0·58). Bronchoalveolar lavage was associated with a small and transient increase in oxygen requirements. Established prescribing practices, reluctance for bronchoalveolar lavage, and dependence on a chain of trial-related procedures emerged as factors that impaired trial processes

    Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition

    Get PDF
    Cognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in Schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modelling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4BY358C mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and ÎČ-Arrestin in hippocampus and amygdala. In behavioural assays, PDE4BY358C mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo. PDE4BY358C mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24 hours, was decreased at 7 days in PDE4BY358C mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signalling by PDE4B in a very late phase of consolidation. No effect of the PDE4BY358C mutation was observed in the pre-pulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory

    DISC1 genetics, biology and psychiatric illness

    Get PDF
    Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain

    Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    Get PDF
    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants
    • 

    corecore