8 research outputs found

    Pathogenic germline variants in SMARCA4 and further cancer predisposition genes in early onset ovarian cancer

    No full text
    Herold N, Schmolling J, Ernst C, et al. Pathogenic germline variants in SMARCA4 and further cancer predisposition genes in early onset ovarian cancer. Cancer Medicine . 2023.To assess the role of germline pathogenic variants (PVs) in SMARCA4 and further established ovarian cancer (OC) predisposition genes in early onset OC, we investigated a clinical cohort of 206 unrelated OC index patients with an age at diagnosis of OC & LE;40 years using an extended panel of 24 (candidate) cancer predisposition genes. PVs in established OC predisposition genes were most frequent in patients with high grade serous OC (21/62, 33.9%), comparatively rare in patients with epithelial OC other than high grade serous (5/74, 6.8%) or borderline ovarian tumours (2/39, 5.1%) and absent in mucinous OC (0/27). We demonstrate that germline PVs in SMARCA4 unlikely predispose for early onset OC other than SCCOHT

    Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    No full text
    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts

    Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    Get PDF
    <p>The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.</p>

    Hyperon signatures in the PANDA experiment at FAIR

    No full text
    We present a detailed simulation study of the signatures from the sequential decays of the triple-strange pbar p -> Ω+Ω- -> K+ΛbarK- Λ -> K+pbarπ+K-pπ- process in the PANDA central tracking system with focus on hit patterns and precise time measurement. We present a systematic approach for studying physics channels at the detector level and develop input criteria for tracking algorithms and trigger lines. Finally, we study the beam momentum dependence on the reconstruction efficiency for the PANDA detector

    Time series of oceanographic parameters measured at the Lacaze-Duthiers Canyon (LDC) and the open-sea convection region in the Gulf of Lion (LION) from January 2008 to June 2010.

    No full text
    <p>(<b>a</b>) Potential temperature at 500 and 1,000 m depth at the LDC mooring site and (<b>b</b>) from various water depths at the LION site, jointly with (<b>c</b>) salinity at 2,300 m depth, (<b>d</b>) horizontal current speed and (<b>e</b>) vertical current speed from various water depths at the LION site. The four levels of temperature measurements at LION presented here are a sub-set of measurement depths (see Fig. S1). Essentially stable temperatures in the deepest layers in 2008 show that open-sea convection reached only 700 m and did not modify the deep water in the study area. In contrast, strong convection events, reaching 2,300 m depth, occurred during February-March 2009 and 2010 with an abrupt cooling of the upper water column and an increase in temperature and salinity in the deep layers. A concurrent increase in current speed was also noticed in winter 2009 and 2010. The 5-month long data gap in 2009 is due to a damaging of the mooring line during the April 2009 recovery, which induced a postponement of its redeployment to September 2009.</p

    Links between bioluminescence, current speed and the modification of the properties of the Western Mediterranean Deep Water (WMDW).

    No full text
    <p>Box-and-whisker plot of median PMT counting rates (log scale) versus current speed classes for salinities higher (red) or lower (grey) than 38.479 for data recorded in (<b>a</b>) 2008, (<b>b</b>) 2009 and (<b>c</b>) between January and June 2010. The salinity threshold of 38.479 is used as a marker of the intrusion of newly formed deep water at the ANTARES site. While bioluminescence increases with current speed, it is also enhanced by the modification of WMDW (red box-plots). The top and bottom of each box-plot represent 75% (upper quartile) and 25% (lower quartile) of all values, respectively. The horizontal line is the median. The ends of the whiskers represent the 10<sup>th</sup> and 90<sup>th</sup> percentiles. Outliers are not represented. The statistical comparison between the two box-plots (red and grey) in each current class is given by the Kruskal-Wallis test: the observed difference between the two samples is significant beyond the 0.05 (*), the 0.01 (**) and the 0.001 (***) levels. The absence of an asterisk in some current classes indicates that the difference between the two box-plots is not significant. The number of measurements for salinity lower or higher than 38.479 is given in black or in red, respectively. Note the different scales of figures a, b and c.</p
    corecore