15 research outputs found

    Neurologic phenotypes associated with COL4A1/2 mutations

    Get PDF
    Objective: To characterize the neurologic phenotypes associated with COL4A1/2 mutations and to seek genotype–phenotype correlation. Methods: We analyzed clinical, EEG, and neuroimaging data of 44 new and 55 previously reported patients with COL4A1/COL4A2 mutations. Results: Childhood-onset focal seizures, frequently complicated by status epilepticus and resistance to antiepileptic drugs, was the most common phenotype. EEG typically showed focal epileptiform discharges in the context of other abnormalities, including generalized sharp waves or slowing. In 46.4% of new patients with focal seizures, porencephalic cysts on brain MRI colocalized with the area of the focal epileptiform discharges. In patients with porencephalic cysts, brain MRI frequently also showed extensive white matter abnormalities, consistent with the finding of diffuse cerebral disturbance on EEG. Notably, we also identified a subgroup of patients with epilepsy as their main clinical feature, in which brain MRI showed nonspecific findings, in particular periventricular leukoencephalopathy and ventricular asymmetry. Analysis of 15 pedigrees suggested a worsening of the severity of clinical phenotype in succeeding generations, particularly when maternally inherited. Mutations associated with epilepsy were spread across COL4A1 and a clear genotype–phenotype correlation did not emerge. Conclusion: COL4A1/COL4A2 mutations typically cause a severe neurologic condition and a broader spectrum of milder phenotypes, in which epilepsy is the predominant feature. Early identification of patients carrying COL4A1/COL4A2 mutations may have important clinical consequences, while for research efforts, omission from large-scale epilepsy sequencing studies of individuals with abnormalities on brain MRI may generate misleading estimates of the genetic contribution to the epilepsies overall

    Delineating the GRIN1 phenotypic spectrum: a distinct genetic NMDA receptor encephalopathy

    Get PDF
    Objective:To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology.Methods:We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes.Results:We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families.Conclusions:De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.Johannes R. Lemke (32EP30_136042/1) and Peter De Jonghe (G.A.136.11.N and FWO/ESF-ECRP) received financial support within the EuroEPINOMICS-RES network (www.euroepinomics.org) within the Eurocores framework of the European Science Foundation (ESF). Saskia Biskup and Henrike Heyne received financial support from the German Federal Ministry for Education and Research (BMBF IonNeurONet: 01 GM1105A and FKZ: 01EO1501). Katia Hardies is a PhD fellow of the Institute for Science and Technology (IWT) Flanders. Ingo Helbig was supported by intramural funds of the University of Kiel, by a grant from the German Research Foundation (HE5415/3-1) within the EuroEPINOMICS framework of the European Science Foundation, and additional grants of the German Research Foundation (DFG, HE5415/5-1, HE 5415/6-1), German Ministry for Education and Research (01DH12033, MAR 10/012), and grant by the German chapter of the International League against Epilepsy (DGfE). The project also received infrastructural support through the Institute of Clinical Molecular Biology in Kiel, supported in part by DFG Cluster of Excellence "Inflammation at Interfaces" and "Future Ocean." The project was also supported by the popgen 2.0 network (P2N) through a grant from the German Ministry for Education and Research (01EY1103) and by the International Coordination Action (ICA) grant G0E8614N. Christel Depienne, Caroline Nava, and Delphine Heron received financial support for exome analyses by the Centre National de Genotypage (CNG, Evry, France)

    Effects of Acute Tryptophan Depletion on Brain Serotonin Function and Concentrations of Dopamine and Norepinephrine in C57BL/6J and BALB/cJ Mice

    Get PDF
    Acute tryptophan depletion (ATD) is a method of lowering brain serotonin (5-HT). Administration of large neutral amino acids (LNAA) limits the transport of endogenous tryptophan (TRP) across the blood brain barrier by competition with other LNAAs and subsequently decreases serotonergic neurotransmission. A recent discussion on the specificity and efficacy of the ATD paradigm for inhibition of central nervous 5-HT has arisen. Moreover, side effects such as vomiting and nausea after intake of amino acids (AA) still limit its use. ATD Moja-De is a revised mixture of AAs which is less nauseating than conventional protocols. It has been used in preliminary clinical studies but its effects on central 5-HT mechanisms and other neurotransmitter systems have not been validated in an animal model. We tested ATD Moja-De (TRP−) in two strains of mice: C57BL/6J, and BALB/cJ, which are reported to have impaired 5-HT synthesis and a more anxious phenotype relative to other strains of mice. ATD Moja-De lowered brain TRP, significantly decreased 5-HT synthesis as indexed by 5-HTP levels after decarboxlyase inhibition, and lowered 5-HT and 5-HIAA in both strains of mice, however more so in C57BL/6J than in BALB/cJ. Dopamine and its metabolites as well as norepinephrine were not affected. A balanced (TRP+) control mixture did not raise 5-HT or 5-HIAA. The present findings suggest that ATD Moja-De effectively and specifically suppresses central serotonergic function. These results also demonstrate a strain- specific effect of ATD Moja-De on anxiety-like behavior

    <i>GRIN2A</i>-related disorders:genotype and functional consequence predict phenotype

    Get PDF
    Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders

    Simplified dietary acute tryptophan depletion: effects of a novel amino acid mixture on the neurochemistry of C57BL/6J mice

    No full text
    Background: Diet and nutrition can impact on the biological processes underpinning neuropsychiatric disorders. Amino acid (AA) mixtures lacking a specific neurotransmitter precursor can change the levels of brain serotonin (5-HT) or dopamine (DA) in the central nervous system. The availability of these substances within the brain is determined by the blood–brain barrier (BBB) that restricts the access of peripheral AA into the brain. AA mixtures lacking tryptophan (TRP) compete with endogenous TRP for uptake into the brain across the BBB, which in turn leads to a decrease in central nervous 5-HT synthesis. Objective: The present study compared the effects of a simplified acute tryptophan depletion (SATD) mixture in mice on blood and brain serotonergic and dopaminergic metabolites to those of a commonly used acute tryptophan depletion mixture (ATD Moja-De) and its TRP-balanced control (BAL). Design: The SATD formula is composed of only three large neutral AAs: phenylalanine (PHE), leucine (LEU), and isoleucine (ILE). BAL, ATD Moja-De, or SATD formulas were delivered to adult male C57BL/6J mice by gavage. TRP, monoamines, and their metabolites were quantified in blood and brain regions (hippocampus, frontal cortex, amygdala, caudate putamen, and nucleus accumbens). Results: Both ATD Moja-De and SATD significantly decreased levels of serum and brain TRP, as well as brain 5-HIAA and 5-HT compared with BAL. SATD reduced HVA levels in caudate but did not alter total DA levels or DOPAC. SATD decreased TRP and serotonergic metabolites comparably to ATD Moja-De administration. Conclusion: A simplified and more palatable combination of AAs can manipulate serotonergic function and might be useful to reveal underlying monoamine-related mechanisms contributing to different neuropsychiatric disorders

    Functional connectivity of the vigilant-attention network in children and adolescents with attention-deficit/hyperactivity disorder

    No full text
    The ability to maintain attention to simple tasks (i.e., vigilant attention, VA) is often impaired in attention-deficit/hyperactivity disorder (ADHD), but the underlying pathophysiological mechanisms at the brain network level are not clear yet. We therefore investigated ADHD-related differences in resting-state functional connectivity within a meta-analytically defined brain network of 14 distinct regions subserving VA (comprising 91 connections in total), as well as the association of connectivity with markers of behavioural dysfunction in 17 children (age range: 9-14 years) with a diagnosis of ADHD and 21 age-matched neurotypical controls. Our analyses revealed selective, rather than global, differences in the intrinsic coupling between nodes of the VA-related brain network in children with ADHD, relative to controls. In particular, ADHD patients showed substantially diminished intrinsic coupling for 7 connections and increased coupling for 4 connections, with many differences involving connectivity with the anterior insula. Moreover, connectivity strength of several aberrant connections was found to be associated with core aspects of ADHD symptomatology, such as poor attention, difficulties with social functioning, and impaired cognitive control, attesting to the behavioural relevance of specific connectivity differences observed in the resting state

    Data from: Neurologic phenotypes associated with COL4A1/2 mutations: expanding the spectrum of disease

    No full text
    Objective: To characterize the neurological phenotypes associated with COL4A1/2 mutations and to seek genotype-phenotype correlation. Methods We analyzed clinical, EEG and neuroimaging data of 44 new, and 55 previously reported patients with COL4A1/COL4A2 mutations. Results Childhood-onset focal seizures, frequently complicated by status epilepticus and resistance to anti-epileptic drugs, was the most common phenotype. EEG typically showed focal epileptiform discharges in the context of other abnormalities, including generalized sharp waves or slowing. In 46.4% of new patients with focal seizures, porencephalic cysts on brain MRI co-localized with the area of the focal epileptiform discharges. In patients with porencephalic cysts, brain MRI frequently also showed extensive white matter abnormalities, consistent with the finding of diffuse cerebral disturbance on EEG. Notably, we also identified a subgroup of patients with epilepsy as their main clinical feature, in which brain MRI showed non-specific findings, in particular periventricular leukoencephalopathy and ventricular asymmetry. Analysis of fifteen pedigrees suggested a worsening of the severity of clinical phenotype in succeeding generations, particularly when maternally inherited. Mutations associated with epilepsy were spread across COL4A1 and a clear genotype-phenotype correlation did not emerge. Conclusions COL4A1/COL4A2 mutations typically cause a severe neurological condition and a broader spectrum of milder phenotypes, in which epilepsy is the predominant feature. Early identification of patients carrying COL4A1/COL4A2 mutations may have important clinical consequences, whilst for research efforts, omission from large-scale epilepsy sequencing studies of individuals with abnormalities on brain MRI may generate misleading estimates of the genetic contribution to the epilepsies overall

    Figure 5

    No full text
    Figure 5. Family pedigrees from published cases. Fig.5a. COL4A2 c. 2399 G>A; p. G800E. Ref. Ha et al., 2016. Fig.5b. COL4A2 c. 3455 G>A; p. G1152D. Ref. Yoneda et al., 2012. Fig.5c. COL4A1 c. 1249G>C; p.G417R. Ref. Giorgio et al., 2015. Fig.5d. COL4A1 c.3796G>C; p.G1266R. Ref. Shah et al., 2012. Fig.5e: COL4A1 c.2662G>C; p.G888R. Ref. Giorgio et al., 2015. Fig.5f: COL4A1 p.G562E. Ref. Vahedi et al., 2003 and Vahedi et al., 2007. Fig.5g.: COL4A1 p. G749S. Ref. Gasparini et al., 2006. Fig.5h: COL4A1 c.3389G>A; p.G1130D. Ref. Breedved et al. 2006 Fig.5i: COL4A1 c.2159G>A. Ref. Tonduti et al., 2012. Fig.5j: COL4A1 c.3715G>A; p.G1239R. Ref. Takenouchi et al., 2015. Fig.5k: COL4A1 c. 2645G>A. Ref. Shah et al., 2012. Fig.5l: COL4A1 c.1973 G>A. Ref. Livingston et al., 2011. Fig.5m: COL4A1 c.4031G>C; p.G1344A. Ref. Leung et al., 2012. Fig.5n: COL4A2 c.3455G>A; p.G1152D. Ref. Yoneda et al., 2012. Fig.5o: COL4A1 c.2085del; p. G696fs. Ref. Lemmens et al., 2013. wt/m: wild-type/mutated
    corecore