101 research outputs found

    Sustainability and renewal: findings from the Leading Sustainable Schools research project

    Get PDF
    "A research study highlighting the characteristics of sustainable schools and the leadership qualities required to develop sustainable schools." - Page 1

    Every child's future: leading the way

    Get PDF

    Funding Systems Change : Challenges and Opportunities

    Get PDF
    Many foundations across the world are increasingly interested in systems change. In the framewor of the SIX Funders Node's activities, 22 foundations and systems change experts have been brought together in September 2016 for a retreat on Wasan Island, in the Muskoka region of Ontario, Canada. Despite coming from different countries and focus areas, the participants were united in their curiosity and desire to create systemic impact. While the retreat drew on global thinking and case studies, it was rooted in practice and provided a unique and focused opportunity for foundations working on systems change, or moving towards systems chance. The purpose of this report is to highlight the learning from that retreat; and to help nurture the emerging community of foundations working in systems change by codifying and sharing examples and practices from the pioneers and early adopters of this approach.

    Where Are You From? An Investigation into the Intersectionality of Accent Strength and Nationality Status on Perceptions of Non-native Speakers in Britain

    Get PDF
    We explore how interpersonal and intergroup perceptions are affected by a non-native speaker’s accent strength and the status of their home country. When nationality information was absent (Study 1), natives who heard a strong (vs. weak) accent rated the speaker as warmer but immigrants as a group as more threatening. This result was replicated when the speaker’s nationality was familiar (Study 2) but in this study, country status further shaped accent-based perceptions: the strong (vs. weak) accented speaker evoked more positive interpersonal perceptions when her country status was low, but more negative intergroup perceptions when her country status was high. When the status of the speaker’s nationality was manipulated (Study 3), we replicated the interpersonal perceptions found in Study 1 and the intergroup perceptions found in Study 2. Findings support a holistic approach to investigating perceptions of non-native speakers: one that considers nationality as well as accent strength

    The EBI RDF platform: linked open data for the life sciences

    Get PDF
    Motivation: Resource description framework (RDF) is an emerging technology for describing, publishing and linking life science data. As a major provider of bioinformatics data and services, the European Bioinformatics Institute (EBI) is committed to making data readily accessible to the community in ways that meet existing demand. The EBI RDF platform has been developed to meet an increasing demand to coordinate RDF activities across the institute and provides a new entry point to querying and exploring integrated resources available at the EBI. Availability: http://www.ebi.ac.uk/rdf Contact: [email protected]

    Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data

    Get PDF
    Genome-wide association studies (GWASs) identify single nucleotide polymorphisms (SNPs) that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease

    CORECLUST: identification of the conserved CRM grammar together with prediction of gene regulation

    Get PDF
    Identification of transcriptional regulatory regions and tracing their internal organization are important for understanding the eukaryotic cell machinery. Cis-regulatory modules (CRMs) of higher eukaryotes are believed to possess a regulatory ‘grammar’, or preferred arrangement of binding sites, that is crucial for proper regulation and thus tends to be evolutionarily conserved. Here, we present a method CORECLUST (COnservative REgulatory CLUster STructure) that predicts CRMs based on a set of positional weight matrices. Given regulatory regions of orthologous and/or co-regulated genes, CORECLUST constructs a CRM model by revealing the conserved rules that describe the relative location of binding sites. The constructed model may be consequently used for the genome-wide prediction of similar CRMs, and thus detection of co-regulated genes, and for the investigation of the regulatory grammar of the system. Compared with related methods, CORECLUST shows better performance at identification of CRMs conferring muscle-specific gene expression in vertebrates and early-developmental CRMs in Drosophila

    Identifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors.

    Get PDF
    Large cohorts of human induced pluripotent stem cells (iPSCs) from healthy donors are a potentially powerful tool for investigating the relationship between genetic variants and cellular behavior. Here, we integrate high content imaging of cell shape, proliferation, and other phenotypes with gene expression and DNA sequence datasets from over 100 human iPSC lines. By applying a dimensionality reduction approach, Probabilistic Estimation of Expression Residuals (PEER), we extracted factors that captured the effects of intrinsic (genetic concordance between different cell lines from the same donor) and extrinsic (cell responses to different fibronectin concentrations) conditions. We identify genes that correlate in expression with intrinsic and extrinsic PEER factors and associate outlier cell behavior with genes containing rare deleterious non-synonymous SNVs. Our study, thus, establishes a strategy for examining the genetic basis of inter-individual variability in cell behavior

    Inferring Condition-Specific Modulation of Transcription Factor Activity in Yeast through Regulon-Based Analysis of Genomewide Expression

    Get PDF
    Background: A key goal of systems biology is to understand how genomewide mRNA expression levels are controlled by transcription factors (TFs) in a condition-specific fashion. TF activity is frequently modulated at the post-translational level through ligand binding, covalent modification, or changes in sub-cellular localization. In this paper, we demonstrate how prior information about regulatory network connectivity can be exploited to infer condition-specific TF activity as a hidden variable from the genomewide mRNA expression pattern in the yeast Saccharomyces cerevisiae. Methodology/Principal Findings: We first validate experimentally that by scoring differential expression at the level of gene sets or "regulons" comprised of the putative targets of a TF, we can accurately predict modulation of TF activity at the post-translational level. Next, we create an interactive database of inferred activities for a large number of TFs across a large number of experimental conditions in S. cerevisiae. This allows us to perform TF-centric analysis of the yeast regulatory network. Conclusions/Significance: We analyze the degree to which the mRNA expression level of each TF is predictive of its regulatory activity. We also organize TFs into "co-modulation networks" based on their inferred activity profile across conditions, and find that this reveals functional and mechanistic relationships. Finally, we present evidence that the PAC and rRPE motifs antagonize TBP-dependent regulation, and function as core promoter elements governed by the transcription regulator NC2. Regulon-based monitoring of TF activity modulation is a powerful tool for analyzing regulatory network function that should be applicable in other organisms. Tools and results are available online at http://bussemakerlab.org/RegulonProfiler/

    Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation

    Get PDF
    Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495–45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13–1.18; p = 8.35 × 10−30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER−) breast cancer (lead SNP rs6864776: per-a allele OR ER− = 1.10; 95% CI 1.05–1.14; p conditional = 1.44 × 10−12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09–1.15; p conditional = 1.12 × 10−05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis
    corecore