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SUMMARY

Large cohorts of human induced pluripotent stem
cells (iPSCs) from healthy donors are a potentially
powerful tool for investigating the relationship be-
tween genetic variants and cellular behavior. Here,
we integrate high content imaging of cell shape,
proliferation, and other phenotypeswith gene expres-
sion and DNA sequence datasets from over 100 hu-
man iPSC lines. By applying a dimensionality reduc-
tion approach, Probabilistic Estimation of Expression
Residuals (PEER), we extracted factors that captured
the effects of intrinsic (genetic concordance between
different cell lines from the same donor) and extrinsic
(cell responses todifferent fibronectin concentrations)
conditions.We identify genes that correlate in expres-
sion with intrinsic and extrinsic PEER factors and
associate outlier cell behavior with genes containing
rare deleterious non-synonymous SNVs. Our study,
thus, establishes a strategy for examining the genetic
basis of inter-individual variability in cell behavior.
INTRODUCTION

Now that the applications of human induced pluripotent stem

cells (hiPSCs) for disease modeling and drug discovery are
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well established, attention is turning to the creation of large co-

horts of hiPSCs from healthy donors. These offer a unique op-

portunity to examine common genetic variants and their effects

on gene expression and cellular phenotypes (Warren et al., 2017;

Pashos et al., 2017; Carcamo-Orive et al., 2017; DeBoever et al.,

2017; Kilpinen et al., 2017). Genome-wide association studies

(GWASs) and quantitative trait locus (QTL) studies can be used

to correlate SNPs and other genetic variants with quantitative

phenotypes (Panopoulos et al., 2017). As a contribution to this

effort, we recently described the generation and characterization

of over 700 open access hiPSC lines derived from 301 healthy

donors through the Human Induced Pluripotent Stem Cell Initia-

tive (HipSci) (Kilpinen et al., 2017; www.hipsci.org). In addition to

creating a comprehensive reference map of common regulatory

variants affecting the transcriptome of hiPSCs, we performed

quantitative assays of cell morphology and demonstrated a

donor contribution in the range of 8%–23% to the observed vari-

ation (Kilpinen et al., 2017). In the present study, we set out to

identify genetic drivers of cell behavior.

Previous attempts using lymphoblastoid cell lines to link ge-

netics to in vitro phenotypes have had limited success (Choy

et al., 2008; Jack et al., 2014). In that context, confounding ef-

fects included Epstein Barr virus (EBV) viral transformation, the

small number of lines analyzed, variable cell culture conditions,

and line-to-line variation in proliferation rate. These factors

decrease the power to detect true relationships between DNA

variation and cellular traits (Choy et al., 2008). In contrast, we

have access to a large number of hiPSC lines derived using
hors.
commons.org/licenses/by/4.0/).
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standard protocols from healthy volunteers, including multiple

lines from the same donor. In addition, HipSci lines present a

substantially lower number of genetic aberrations than reported

for previous collections (Kilpinen et al., 2017; Laurent et al.,

2011). Cells are examined over a limited number of passages,

and cell properties are evaluated at single-cell resolution during

a short time frame, using high-throughput quantitative readouts

of cell behavior.

Stem cell behavior reflects both the intrinsic state of the cell

(Choi et al., 2015; Kyttälä et al., 2016) and the extrinsic signals

it receives from its local microenvironment, or niche (Lane

et al., 2014; Reimer et al., 2016). We hypothesized that subject-

ing cells to different environmental stimuli increases the likeli-

hood of uncovering links between genotype and cell behavior.

For that reason, we seeded cells on different concentrations of

the extracellular matrix (ECM) protein fibronectin that support

cell spreading to differing extents and assayed the behavior of

single cells and cells in contact with their neighbors. We took a

‘‘cell observatory’’ approach, using high-throughput, high-con-

tent imaging to gather data from millions of cells 24 h after seed-

ing. We then applied a multidimensional reduction method,

Probabilistic Estimation of Expression Residuals (PEER) (Stegle

et al., 2012), to reveal the underlying structure in the dataset and

correlated cell behavior with the expression of a subset of genes

and the presence of rare deleterious non-synonymous single

nucleotide variants (nsSNVs). The strategy we have developed

bridges the gap between genetic and transcript variation on

the one hand and cell phenotype on the other, and should be

of widespread utility in exploring the genetic basis of inter-indi-

vidual variability in cell behavior.

RESULTS

Generation and Characterization of the Lines
Weanalyzed 110 cell lines, 107 from theHipSci resource (Kilpinen

et al., 2017) and 3 non-HipSci control lines (Table S1). Of these,

99 lines were reprogrammed by Sendai virus and 11 using

episomal vectors. A total of 100 lines came from 65 healthy

researchvolunteers; thus, several lineswerederived fromdifferent

clones from the same donor. Seven lines came from 7 individuals

with Bardet-Biedl syndrome.Out of the total, 102 of the lineswere

derived from skin fibroblasts, 6 from peripheral blood monocytes

and 2 from hair follicles. Lines were subjected to the quality con-

trols specified within the HipSci production pipeline, including

highPluriTest (StemCell Assays) scores and the ability to differen-

tiate along the three embryonic germ layers. All the cell lines were

reprogrammed on feeders, and all but 6 lines were cultured on

feeders prior to phenotypic analysis (Table S1). Most cells were

examined between passages 15 and 45 (Table S1).

Cell Behavior Assays
To quantitate cell behavior at single-cell resolution, we used the

high-content imaging platform that we described previously

(Leha et al., 2016). Cells were disaggregated and resuspended

in the presence of 10-mM Rho-associated protein kinase

(ROCK) inhibitor to minimize cell clumping. In order to vary the

extrinsic conditions for cell adhesion and spreading, cells were

seeded on 96-well plates coated with 3 different concentrations
of fibronectin, namely, 1, 5, and 25 mg/mL (Fn1, Fn5, and Fn25,

respectively), with Fn1 representing a suboptimal concentration

for cell attachment and spreading. After 24 h of culture in the

presence of the ROCK inhibitor, cells were labeled with 5-ethy-

nyl-20-deoxyuridine (EdU) for 30min (to detect proliferative cells),

fixed, and stained with 40,6-diamidino-2-phenylindole (DAPI) (to

visualize nuclei) andCellMask (to visualize cytoplasm) (Figure 1A;

Figure S1A). qPCR (Figure S1B) and antibody labeling (Fig-

ure S1A) confirmed that pluripotency was maintained at 24 h,

regardless of FN concentration. In addition, when cells were har-

vested from FN and replated, they were able to form colonies

containing a majority of Oct4- and NANOG-positive cells (Fig-

ures S1C and S1D).

Three replicate wells were seeded per cell line, and each cell

line was analyzed in up to three independent experiments. Wells

containing technical triplicates of each fibronectin concentration

were randomized per column (e.g., 1-5-25; 5-25-1; 25-1-5) to

obviate edge and position effects. Technical replicates of the

same cell line were randomized in rows and one line, previously

reported as A1ATD-iPSC patient 1 (Rashid et al., 2010), was

included to control for biological variation between experiments.

From each of approximately 2 million cells, we extracted a to-

tal of 11 measurements, 10 per cell (i.e., object-based), plus the

number of cells per well (i.e., well-based) (Figures 1B-1D). Cell

features included the derived area, roundness, and width to

length ratio of each cell and each nucleus. We also determined

clump size, a context feature representing the number of cells

in a group that were in contact with one another. We then

measured the features of individual solitary cells and individual

cells within a group (Figures 1B–1D). Some features were posi-

tively correlated with one another, such as cell area and nuclear

area, whereas in other cases, such as cell area and cell round-

ness, there was an inverse correlation (Figure 1C). The pheno-

typic features were processed as described previously (Leha

et al., 2016), i.e., well-based measurements were normalized in

value (log10 or square transformation) and aggregated across

the cells in each well by taking the average and standard devia-

tion. For EdU incorporation, median pixel intensity raw values per

cell were used to extract a well-based measure of the fraction of

EdU-positive cells (Leha et al., 2016). This resulted in a final list of

52 features (Table S2).

The scale and complexity of the cell phenotype dataset is illus-

trated in Figure 1F, in which the mean value of cell area is repre-

sented for all cell lines, for three fibronectin concentrations and

three biological replicates (batches; gray bars indicate replicates

that were not performed). This highlights the variance we

observed between replicate experiments. It also reveals the

extent of variability for cell lines derived from the same donor, de-

noted by a common 4-letter code (Figure 1F). It shows a consis-

tent effect of fibronectin concentration on cell behavior, with

cells exhibiting a smaller spread area on the lowest concentra-

tion (see also Figure 1D). Figure 1E shows that fibronectin con-

centration has a significant effect on cell area and that the effect

is greater than the variance between cell lines and between bio-

logical replicates. Similar results were obtained for other raw

phenotypic features (Figure S2). We conclude that FN concen-

tration, which is an extrinsic or environmental factor, influences

cell behavior regardless of the donor origin of each cell line.
Cell Reports 26, 2078–2087, February 19, 2019 2079



Figure 1. Description of Phenotypic Dataset

(A) Microscopic image showing cells 24 h after plating. Red: cell mask (cytoplasm); white: EdU incorporation (DNA synthesis, one EdU+ cell markedwith asterisk);

blue: DAPI (nuclei). Scale bar: 20 mm.

(B) Schematic of phenotypic features measured in this study.

(C) Correlation of different phenotypic measurements in all cells.

(D) Distribution of main phenotypic features of all cell lines on three fibronectin concentrations (Fn1, red; Fn5, green; Fn25, blue). y axis: density measurements

represent the cell number distributions.

(E) Boxplots of mean cell area on three fibronectin concentrations in three biological replicates (batches). Each dot is one cell line. Asterisks (****p % 0.0001)

represent significance values from pairwise t tests performed between each condition.

(F) Heatmap of mean cell area measurements for each cell line on three fibronectin concentrations in three independent experiments. Grey boxes correspond to

replicates not performed.
Identification of Outlier Cell Lines
Having established that FN concentration, an extrinsic factor, in-

fluences cell behavior, we next examined whether individual cell

lines exhibited outlier FN responses as a potential route to

exploring genetic (intrinsic) contributions to cell phenotype.

Outlier cell lines were defined as lines that deviated significantly

frommodal phenotypic values. To identify them, we performed a

Kolmogorov-Smirnov test of the distributions of each raw

phenotypic feature for each individual cell line compared to all

cell lines (Figure 2). We arbitrarily defined outliers as cell lines
2080 Cell Reports 26, 2078–2087, February 19, 2019
with a statistic (D) value above the 95th percentile. Out of the

110 lines analyzed, 36 lines from 30 donors exhibited outlier

behavior for one or more phenotypic feature (Figure 2;

Figure S3).

In support of a genetic contribution to outlier cell behavior, in

several cases two independent lines from the same donor ex-

hibited the same outlier behavior. For example iakz_1 and

iakz_2 were outliers for cell roundness, whereas airc_2 and

airc_3 were outliers for DAPI nuclear staining intensity. In

addition, where two phenotypes were positively or negatively



Figure 2. Identification of Outlier Cell Lines for Individual Phenotypes

The distribution of the Kolmogorov-Smirnov statistic (D) obtained by performing the Kolmogorov-Smirnov test of the distributions of each raw phenotypic feature

for each individual cell line compared to all cell lines. 95th percentile threshold is shown as a red line together with values of individual outlier lines (color coded).

Lines listed in italic bold correspond to lines having outlier measurements in more than one batch.
correlated (e.g., cell area and cell roundness), some cell lines

were outliers in both categories (e.g., iakz_1).

Applying PEER to Discover Determinants of Variation in
Cell Behavior
In order to explore how extrinsic (i.e., different fibronectin con-

centrations), intrinsic (i.e., cell line donor specific), and technical

or biological components (covariates) contributed to the

observed variation in cell phenotypes, we applied a dimension-

ality reduction approach called Probabilistic Estimation of

Expression Residuals (PEER) (Stegle et al., 2012). PEER is a soft-

ware package that implements Bayesian statistical models that

improve the sensitivity and interpretability of genetic associa-

tions in population-scale data. It takes as input gene transcript

profiles and covariates from a set of individuals and then outputs

hidden factors (PEER factors) that explain the expression vari-

ability. Many previous studies have demonstrated the impor-

tance of accounting for hidden factors to achieve a stronger sta-

tistical discrimination signal (Leek and Storey, 2007; Stegle et al.,

2008; Kang et al., 2008). Here, we have applied PEER to multidi-

mensional reduction of cell phenotypic data.

In our analysis, we input the 52 phenotypic measurements

(Table S2), the 3 covariates (i.e., fibronectin concentrations,
experimental replicates, and individual donors), and the esti-

mated total number of unobserved factors (k). To obtain this

number, the PEER analysis was repeated several times with a

range of values of k (from 1 to 13), and for each k the inverse

of the variance of the factor weight was calculated with auto-

matic relevance determination (ARD) (Stegle et al., 2012) (Fig-

ure S4A). The plot of the inverse variance of factor weights

against the k number (usually observed as an ‘‘elbow’’) shows

that above k = 9, the inverse variance begins to rise, indicating

that there is no additional benefit of increasing k further (Fig-

ure S4A). Thus, in our analysis, a total of 9 PEER factors could ac-

count for the observed variance in cell behavior.

We next evaluated whether any PEER factor(s) captured the

variance in cell behavior due to the different fibronectin concen-

trations (Figure 3). The effect of fibronectin was statistically signif-

icant (paired t test) for all three concentrations in the case of Fac-

tors 1, 3, and 7 (Figure 3). Of those, PEER Factor 1 was the factor

that best captured the variance based on statistical analysis. All of

the other variance in cell phenotypes attributable to the different

fibronectin concentrations (including mean and standard devia-

tion of total number of attached cells, cell and nucleus area and

DAPI staining intensity) was also captured by PEER Factor 1 to

a greater extent than the other factors (Figure S4B).
Cell Reports 26, 2078–2087, February 19, 2019 2081



Figure 3. Synthetic Phenotypic Features Capture Extrinsic and Intrinsic Contributions to Variance

Plots showing the distribution of values for the 9 PEER Factors (F1–F9). Left andmiddle columns show distributions for three fibronectin concentrations (Fn1, red;

Fn5, green; Fn25, blue). Asterisks represent significance values from pairwise t tests performed between each fibronectin condition (****p% 0.0001; ***p% 0.001;

**p % 0.01; *p % 0.05; ns, not significant). Right-hand column shows the donor-concordance between two clonal lines of cells derived from the same donors.

Values for one cell line in each pair are shown on the x axis and its ‘‘twin’’ on the y axis. Each dot corresponds to one cell line.
We previously reported a donor contribution in the range of

8%–23% to the observed variation in cell behavior (Kilpinen

et al., 2017). We therefore hypothesized that one or more

PEER factors would capture structure in the data that was

dependent on the genetic background of the donors from

whom the cell lines were generated. In the cases where we

had cell behavior data for two independent lines from the same

donor, we plotted phenotypic data for one of the cell lines on

the x axis and the other (‘‘twin’’) cell line on the y axis. Donor

concordance is indicated by a positive correlation between the

measurements for each pair of lines. This was highest in the

case of PEER Factor 9, and therefore this was the factor that

best captured intrinsic variance (Figure 3). Phenotypic features

describing EdU labeling and other nuclear properties, both in

single and clumped cells, loaded onto PEER Factor 9 (Fig-

ure S4B). PEER Factor 9 did not capture any of the variation

due to FN concentration (Figure 3).
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Identification of Genes Correlating with Extrinsic and
Intrinsic Variation
To identify genes whose expression correlated with phenotypic

variance, we performed a correlation analysis between the

intrinsic (PEER Factor 9) and extrinsic (PEER Factor 1) factors

and gene expression array data independently generated from

cell pellets as part of the HipSci resource. The gene expression

datasets were generated from cell lines between passages

8–41. There was no significant variation in the RNA sequencing

(RNA-seq) expression of the majority of genes, including

pluripotency factors NANOG and OCT4, with passage number

(Kilpinen et al., 2017).

The expression of 4,573 genes correlated with PEER Factor 1

(PEER 1) or PEER 9, or both factors, in at least one fibronectin

concentration (Table S3). These genes could be a mixture of

genes that are causal, proxy, or a consequence of the cellular

trait captured by PEER. From this list, we filtered out genes



Figure 4. Using the ‘‘Extrinsic’’ and

‘‘Intrinsic’’ PEER Factors to Identify Genes

That Correlatewith SpecificCell Phenotypes

(A) Heatmap showing the 3,879 genes correlated

with either extrinsic PEER Factor 1, intrinsic Factor

9, or both. Color scale depicts correlation values.

(B) GO analysis of genes correlating with PEER 1

(blue circles), PEER 9 (orange circles), or both

factors (gray circles). All GO terms for the factors

are shown. Circle size represents the frequency of

the GO term in the underlying Gene Ontology

Annotation (GOA) database; red color scale in-

dicates p value. Each gene was mapped to the

most specific terms applicable in each ontology.

Highly similar GO terms are linked by edges, with

edge width depicting the degree of similarity.

Terms in black font were used to select the list of

175 genes in Table S3.

(C) In 98 out of 175 genes, gene expression

correlated significantly with cell area, tendency to

form clumps (‘‘clumpiness’’), number of cells, and/

or proliferation. The colors of the points corre-

spond to the correlation values, while the shapes

indicate correlation of a specific gene to the

extrinsic (PEER 1; oval), intrinsic (PEER 9; rect-

angle) or both (triangles) factors. Grey dotted

vertical lines separate genes correlating with one,

two or four phenotypes (left to right).

(D) Boxplots showing the expression values (vsn)

of 32 out of the 38 genes (Table S5) with outlier

gene expression in one or more outlier cell line.

Color code (blue, orange, gray) as in (B).
that were not associated with any Ensembl identifiers. We also

removed genes for which multiple probes showed opposite cor-

relation values. The resulting dataset consisted of 3,879 genes

(Table S3), 1,321 correlating with PEER 1, 1,977 correlating

with PEER 9, and 581 with both (Figure 4A).

Gene Ontology (GO) analysis was performed on the 3,879

genes at a threshold value of ±0.2 of the correlation coefficient

(Figure 4B; Table S4). All of the GO terms associated with

PEER 1 and PEER 9 are shown in Figure 4B. GO terms associ-

ated with PEER 1 included cell adhesion and receptor serine

and threonine kinase signaling. Terms associated with PEER 9

included cell proliferation, response to stress, and integrin-medi-

ated cell adhesion. Only two GO terms were associated with

both PEER factors: membrane organization and cell-matrix

adhesion.

Based on the phenotypes measured in our study, we further

filtered the genes according to the functions of their protein

products. Because we measured EdU incorporation, the rele-

vant GO terms are cell cycle and regulation of cell proliferation.

Cell-extracellular matrix adhesion is the relevant GO term to cap-

ture adhesion to fibronectin. We alsomeasured adhesion of cells

in groups, and therefore cell-cell adhesion is the relevant GO
Cell Repo
term. The additional GO termsmembrane

organization and transmembrane recep-

tor signaling are relevant to all the

measured phenotypes: proliferation,

ECM adhesion, and cell-cell adhesion
(Table S2). Within the 3,879 genes correlating with either or

both PEER Factors, 175 genes belonging to these 6 GO cate-

gories were found. The expression of 98 out of the 175 genes

showed a statistically significant correlation with at least 1 of

our raw phenotypic features (Table S3). The importance of per-

forming a dimensionality reduction analysis on the phenotypic

data and then using the selected factors for the correlation

with gene expression data instead of raw phenotypes is

confirmed by the quantile (Q-Q) plots in Figure S4C.

Examples of gene expression variation among cell lines for

genes correlating with one, two, three, or four phenotypic fea-

tures (cell number, proliferation, cell clumping, and cell area)

are shown in Figure 4C. We noted that most genes showed

distinct correlations with the PEER factors (Figure 4C; Table

S3). In addition, opposite correlations were found for a given

gene and one or more phenotypes. For example, ITGAL, which

mediates intercellular adhesion, was positively correlated with

clumping and negatively correlated with proliferation.

A total of 38 out of 175 genes showed outlier expression (5th

and 95th percentiles) in one or more cell line (Figure 4D). The ma-

jority of these genes (32 out of 38) were outliers in outlier cell lines

(Table S5). The only outlier gene exclusively associated with
rts 26, 2078–2087, February 19, 2019 2083



Figure 5. Identification of Rare, Deleterious,

and Destabilizing nsSNVs That Correlate

with Outlier Cell Behavior

(A) Analysis pipeline for selection of genes. The

3,879 genes associated with PEER 1 and 9 were

screened for nsSNVs in over 700 cell lines from the

HipSci resource and further filtered as shown.

(B) Genes with at least one rare, deleterious, and

destabilizing nsSNV in at least one cell line found to

be an outlier for one or more phenotype. See Fig-

ure 2 for outlier KS analysis. Genes correlating with

PEER Factor 1: blue; PEER Factor 9: orange; both:

gray. The phenotypes of cell area, cell roundness,

and nucleus roundness were significantly over-

represented in outlier cell lines with one or more

deleterious and destabilizing nsSNV (p % 0.05).

(C) Representative images of outlier cell line

yuze_1 (top), control cell line A1ATD-iPSC patient 1

(center), and cell line not analyzed in the original

screen ffdc_11 (bottom), on different fibronectin

concentrations (Fn1, Fn5, and Fn25).

(D) Protein structures of integrin a6 (top) and in-

tegrin b1 (bottom). nsSNVs detected in the two cell

lines are shown with yellow spots indicated by red

arrows.
PEER 9 was SRC, proto-oncogene tyrosine-protein kinase.

However, in cases in which two cell lines from the same donor

were outliers for the same raw phenotypic features (Figure 2),

this did not correlate with an overexpression or lack of expres-

sion of the same set of genes.

In conclusion, we could identify a large number of mRNAs that

correlated with modal cell behavior and a smaller number that

correlated with outlier behavior. The GO terms were, for the

most part, those that would be predicted to be associated with

the types of phenotypic measurement that we recorded.

Identification of nsSNVs in Cell Adhesion Genes that
Correlate with Outlier Cell Phenotypes
Because most of the mRNAs loading onto PEER 1 and PEER 9

correlated with modal, rather than outlier cell behavior, we

explored the alternative hypothesis that the presence of single

nucleotide variants (nsSNVs) in gene exons that affected protein

function would correlate with outlier cell behavior. We searched

all the cell lines in the Hipsci resource (>700 lines) for nsSNVs in

the 3,879 genes (Table S3) identified with the extrinsic and

intrinsic PEER factors (Figure 5A; Table S6). Of the 10,257
2084 Cell Reports 26, 2078–2087, February 19, 2019
nsSNVs identified, 4,495 were classified

as rare, based first on the 1000 Genomes

Project Consortium (2015) and ExAC (Lek

et al., 2016) and second on the frequency

in our cell lines (present in fewer than 5 out

of 110 lines) (Figure 5A).We further filtered

the nsSNVs by using the computational

model DUET (Pires et al., 2014) to predict

nsSNVs that would be deleterious and the

computational model Condel (González-

Pérez and López-Bigas, 2011) to predict

a final list of 103 rare, deleterious, and de-
stabilizing nsSNVs that would impair protein structure. Among

the genes that we identified (Table S6), several encoded proteins

were associated with cell adhesion, including integrins and cyto-

skeleton and ECM proteins.

A total of 37 of the 103 rare, deleterious, and destabilizing

nsSNVs occurred in cell lines that were outliers for one or more

phenotype (Figure 5B; Table S6). In Figure 5B, those genes asso-

ciated with PEER Factor 1 are marked in blue, those associated

with PEER Factor 9 in orange, and the gene associated with both

in gray. The phenotypes of cell area, cell roundness, and nucleus

roundness were significantly over-represented in outlier cell lines

with one or more deleterious and destabilizing nsSNV (Fisher’s

exact test comparing the number of outlier cell lines with and

without nsSNVs against non-outlier cell lines) (Figure 5B).

Integrins are heterodimeric proteins that mediate binding to

fibronectin and other extracellular matrix proteins. We identified

a nsSNV in ITGA6, encoding the a6 integrin subunit, in yuze_1,

which maps to the integrin ligand-binding domain (Figures 5B–

5D). Consistent with the predicted deleterious effect of this mu-

tation, Yuze_1 is an outlier for cell roundness andwidth-to-length

ratio (Figure 5B) and shows reduced spreading, particularly on



the lowest concentration of fibronectin (Figure 2; Figure 5C). We

also found a nsSNV in the ligand-binding domain of ITGB1, en-

coding the b1 integrin subunit, in one of the HipSci cell lines,

ffdc_11, that had not been included in the phenotypic screen.

When plated on fibronectin, the ffdc_11 line also exhibited

reduced attachment and spreading on the lowest fibronectin

concentration (Figure 5C), indicative of the predicted outlier

phenotype. Thus, we were able to predict outlier cell behavior

based on a nsSNV in an integrin gene.

DISCUSSION

Genetic mapping provides an unbiased approach to discovering

genes that influence disease traits and responses to environ-

mental stimuli, such as drug exposure (McCarthy et al., 2008).

The attractions of developing human in vitro models that reflect

in vivo genetics and physiology for mechanistic studies are

obvious and include quantitation by high-content image analysis

and the replacement of animal experiments. The concept that

human-disease-causing mutations result in alterations in cell

behavior that can be detected in culture is well established, as

in the case of keratin mutations affecting the properties of

cultured epidermal cells (Knöbel et al., 2015). In addition, human

lymphoblastoid cell lines have long been used to model geno-

type-phenotype relationships in healthy individuals, although

limitations include the confounding effects of biological noise

and differentiation state, and variation in passage number and

proliferation rate (Choy et al., 2008; Jack et al., 2014).

There has been renewed interest in applying human iPSCs for

pharmacogenomics, disease modeling, and uncovering genetic

modifiers of complex disease traits (Barral and Kurian, 2016). For

example, studies with iPSC-derived neurons (Brennand and

Gage, 2011) support the ‘‘watershedmodel’’ (Cannon and Keller,

2006), whereby many different combinations of malfunctioning

genes disrupt a few essential pathways to result in the disease.

For these reasons, we decided to extend the iPSC approach in

an attempt to identify genetic modifiers of cell behavior in healthy

individuals. We have recently reported that in an analysis of over

700 well-characterized human iPSC lines, there is an 8%–23%

genetic contribution to variation in cell behavior (Kilpinen

et al., 2017). Our ability to detect this contribution depended

on the use of simple, short-term, quantitative assays of cell

behavior; the application of multiple environmental stimuli

(different concentrations of fibronectin; single cells versus cell

clumps); and homogeneous starting cell populations for the as-

says. The concept that genetic background contributes to the

variability of human iPSCs is supported by a number of earlier

studies (Kyttälä et al., 2016; Burrows et al., 2016; Rouhani

et al., 2014).

In order to explore the nature of the genetic contribution to

variation in cell behavior, we developed computational ap-

proaches to integrate genomic, gene expression, and cell

biology datasets. Previously, we had taken a GWAS approach

(Kilpinen et al., 2017) and found only 6 variants where the lead

expression quantitative trait locus (eQTL) variant was identical

to a cataloged GWAS variant, including an eQTL variant for the

TERT gene. This was one of our motivations for developing

different approaches. We applied a dimensionality reduction
approach, PEER, to capture variance due to extrinsic contribu-

tors (different fibronectin concentrations) and genetic concor-

dance. This revealed a robust correlation between RNA expres-

sion and the phenotypic features in a large panel of iPSC lines,

with the expression of specific RNAs associated with intrinsic

or extrinsic factors. Carcamo-Orive et al. (2017) also found that

human iPSC lines retain a donor-specific gene expression

pattern. However, in that study, cells were not exposed to

different environmental stimuli.

The majority of human iPSCs we screened responded in the

same way to a given FN concentration. This likely reflects canal-

isation, the process by which normal organs and tissues are pro-

duced even on a background of slight genetic abnormalities

(Rutherford and Lindquist, 1998; McLaren, 1999). However, we

did identify cell lines that exhibited outlier behavior that could

not be accounted for by variation in gene expression levels

(see Figure 4), leading us to hypothesize that outlier phenotypes

might correlate with genetic variants. We identified rare nsSNVs

that were predicted to be deleterious and for which protein struc-

tural informationwas available. Some of the nsSNVs identified by

this approach occurred in cell lines that were outliers for one or

more phenotypes, such as cell spreading. The phenotypes of

cell area, cell roundness, and nucleus roundness were signifi-

cantly over-represented in outlier cell lines with one or more

deleterious and destabilizing nsSNV. The identification of

nsSNVs in integrin genes is of particular interest, because integ-

rins are highly polymorphic and some of the previously reported

nsSNVs alter adhesive functions of cancer cells (Ferreira et al.,

2009; Evans et al., 2003).

In conclusion, our platform has been successful in associating

specific RNAs with intrinsic or extrinsic factors and discovering

nsSNVs that correlate with outlier cell behavior. This represents

a major advance in attempts to map genetic variation to pheno-

typic variation.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Oct4 Santa Cruz Sc5279

NANOG Abcam Ab80892

Chemicals, Peptides, and Recombinant Proteins

Human plasma fibronectin Corning 356008

ROCK inhibitor Enzo Y-27632

Accutase Biolegend 423201

Click-iT EdU kit Life Technologies C10337

CellMask Life Technologies C10046

DAPI ThermoFisher D1306

Deposited Data

Gene expression https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4057/ N/A

Image data resource https://idr.openmicroscopy.org/webclient/?show=screen-2051 Idr0037

Experimental Models: Cell Lines

Human iPSCs https://www.sanger.ac.uk/science/collaboration/hipsci Table S1

Oligonucleotides

50GGGAGCAAACAGGATTAGATACCCT30 Sigma Mycoplasma FW

50TGCACCATCTGTCACTCTGTTAACCTC30 Sigma Mycoplasma Rev

Probe Hs04260367_gH Taqman ThermoFisher Oct4

Software and Algorithms

Harmony v4.1 software https://support.myharmony.com/en-gb/ Perkin Elmer

Gene Ontology http://cbl-gorilla.cs.technion.ac.il/ N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Fiona

Watt (fiona.watt@kcl.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell line derivation and culture
All HipSci samples were collected from consented research volunteers recruited from the NIHR Cambridge BioResource (https://

www.cambridgebioresource.group.cam.ac.uk/). Human iPSC were generated from fibroblasts by transduction with Sendai vectors

expressing hOCT3/4, hSOX2, hKLF4, and hc-MYC (CytoTune, Life Technologies, Cat. no. A1377801). Cells were cultured on irradi-

ated orMitomycin C-treatedmouse embryonic fibroblasts (MEF-CF1) in advancedDMEM (Life technologies, UK) supplemented with

10%Knockout Serum Replacement (KOSR, Life technologies, UK), 2 mM L-glutamine (Life technologies, UK) 0.007% 2-mercaptoe-

thanol (Sigma-Aldrich, UK), 4 ng/mL recombinant Fibroblast Growth Factor-2, and 1% Pen/Strep (Life technologies, UK). Pluripo-

tency was assessed based on expression profiling (M€uller et al., 2011), detection of pluripotency markers in culture and response

to differentiation inducing conditions (Robinton and Daley, 2012). Established iPSC lines were passaged every 3-4 days approxi-

mately at a 1:3 split ratio. The ID numbers and details for each cell line are listed in Table S1.

Mycoplasma testing and STR profiling
For mycoplasma testing 1 mL of conditioned medium was heated for 5min at 95�C. A PCR reaction was set up with the following

primers: forward (50GGGAGCAAACAGGATTAGATACCCT30); reverse (50TGCACCATCTGTCACTCTGTTAACCTC30). PCR products

were loaded on a 1% w/v agarose gel, run at 110 V for 30 minutes in TAE buffer and observed with a Gel Dox XR+ imaging system

(Bio-Rad). To confirm cell line identity, DNA extraction was performed using the DNeasy Blood & Tissue Kit (QIAGEN). Confluent cells

were dissociated from 6-well plates and lysed in protein K solution; 4 mL of 100mg/ml RNase solution (QIAGEN) was added and DNA
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was purified through the spin-column and eluted in 150 ml. DNA quality was confirmed with a nanodrop spectrophotometer (Nano-

drop 2000, Thermo scientific) and on a 1% agarose gel. DNA samples were sequenced using STR profiling at the Wellcome Trust

Sanger Institute.

METHOD DETAILS

Fibronectin adhesion assays
96-well micro-clear-black tissue culture plates (Greiner cat. No. 655090) were coated with three concentrations of human plasma

fibronectin (Corning) in alternating columns in a randomized fashion (Leha et al., 2016). Cells were incubated for 8 min with Accutase

(Biolegend) to create a single cell suspension. As the cells began to separate and round up, pre-warmed medium containing 10 mM

Rho- associated protein kinase (ROCK) inhibitor (Y-27632; Enzo Life Sciences) was added and cells were removed from culture wells

by gentle pipetting to form a single cell suspension. Cells were then collected by centrifugation, aspirated and resuspended in me-

dium containing 10 mM ROCK inhibitor. Cells were counted using a Scepter 2.0 automated cell- counting device (Millipore) and

seeded onto the fibronectin- coated 96-well plates using Viaflo (INTEGRA Biosciences) electronic pipettes.

Cell line plating was randomized within rows, with three wells per condition for each line to obviate edge and position effects. One

control line (A1ATD-iPSC patient 1) (Rashid et al., 2010), kindly provided by S. Tamir Rashid and Ludovic Vallier, was run as an internal

control in the majority of plates. For each well, 3,000 cells were plated for 24 hours prior to fixation. Paraformaldehyde 8% (PFA,

Sigma–Aldrich) was added to an equal volume of medium for a final concentration of 4%, and left at room temperature for

15 min. Cells were labeled with EdU (Click-iT, Life Technologies) 30 minutes before fixation. Fixed cells were blocked and permea-

bilised with 0.1% v/v Triton X-100 (Sigma–Aldrich), 1% w/v bovine serum albumin (BSA, Sigma–Aldrich) and 3%v/v donkey serum

(Sigma–Aldrich) for 20 min at room temperature and stained with DAPI (1 microM final concentration, Life Technologies) and cell

mask (1:1000, Life Technologies). EdU was detected according to the manufacturer’s instructions, except that the concentration

of the azide reagent was reduced by 50%.

Images were acquired using an Operetta (Perkin Elmer) high content device. Border wells were avoided to reduce edge effects.

Harmony v4.1 software was used to derive measurements for each cell. Measurements included intensity features (DAPI, EdU),

morphology features (cell area, cell roundness, cell width to length ratio, nucleus area, nucleus roundness, nucleus width to length

ratio) and context features related to cell adhesion properties (number of cells per clump). Processing quantification and normaliza-

tion of data were performed as previously described (Leha et al., 2016).

Gene expression profiling
Gene expression profiles were measured with Illumina HumanHT-12 v4 Expression BeadChips and processed as described by

Kilpinen et al., (2017). Probe intensity estimates were normalized separately for the two cell types using the variance-stabilizing trans-

formation implemented in the R/Bioconductor vsn package (Huber et al., 2002). After normalization, the datasets were limited to the

final remapped set of probes (n probes = 25,604). We refer to this version of the gexarray data as vsn log2 (iPSC/somatic). PEER

analysis was performed taking as input the vsn expression values with the following parameters: K = 36; covariates = cell line and

batch; maximum iterations = 10,000. The residual gene expression matrix was used to perform a correlation analysis with both

intrinsic/extrinsic factors and raw phenotypes using cor() function in R (method Spearman’s).

Dimensionality reduction approach
We applied a Bayesian factor analysis model called PEER (Stegle et al., 2012) to the phenotype data in each cell line. This approach

uses an unsupervised linear model to account for global variance components in the data, and yields a number of factor components

that can be used as synthetic phenotypes in further analysis. We tested a wide range of parameter settings for the model (the k

number), controlling the amount of variance explained by it. We ran PEER with the full pre-normalized dataset with the following

parameters: K = 9; covariates = cell line, fibronectin and batch; maximum iterations = 10,000.

Gene Ontology analysis
Gene Ontology analysis was performed using the Gorilla web-service (http://cbl-gorilla.cs.technion.ac.il/) and the output was visu-

alizedwith ReviGO (http://revigo.irb.hr/). Three analyseswere performed separately for the genes correlating with the extrinsic factor,

the intrinsic factor and both factors.

Single Nucleotide Variation (SNV) analysis
All nsSNVs identified from the ‘‘INFO_04_filtered’’ VCF files from the latest release of the exomeseq data, which have been filtered for

higher confidence variants using Impute2, were mapped to protein sequences using ANNOVAR (Wang et al., 2010). Those nsSNVs

that mapped to genes in our set of genes were selected for further analysis.

Rare nsSNVs were defined as those with aminor allele frequency (MAF) < 0.005 in both the 1000 Genomes Project (1000 Genomes

Project Consortium, 2015) and ExAC database (Lek et al., 2016). Protein domain boundaries were obtained by scanning UNIPROT

(The UniProt Consortium, 2017) protein sequences against the PFAM (Finn et al., 2016) seed libraries using HMMER (Finn et al.,

2011). UniProt proteins (with mapped nsSNVs) were assigned resolved protein structures/homologs from the PDB biounit database
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(Berman et al., 2003) using BLAST (Altschul et al., 1997). BLAST searches were carried out using both the entire protein sequences

and domain sequences.

For each protein with mapped nsSNVs the structural homolog with the highest identity was chosen as a template for homology

modeling. In the case of ties the modeling process was performed using each template. The portion of the template and query

sequences relating to a BLAST hit were aligned using T-COFFEE (Notredame et al., 2000). 10 homology models for each query tem-

plate alignment were created using the MODELER software (Webb and Sali, 2016). In each case the model with the lowest zDOPE

score (Shen and Sali, 2006) was selected for further analysis. Wheremodels were created using several templates themodel with the

lowest zDOPE out of all created models was selected for further analysis.

The impact of all nsSNVs was assessed using a primarily sequence-based consensus predictor of deleteriousness, Condel

(González-Pérez and López-Bigas, 2011). Where structural information was available, the impact of nsSNVs on protein structural

stability was also predicted using DUET (Pires et al., 2014).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and normalization of cell phenotype data were performed as previously described (Leha et al., 2016). For gene expres-

sion analysis a p value threshold < 0.05 was applied to select the statistically significant correlations and the cut-off of the correlation

values was set to ± 0.2. Hits in the BLAST SNV analysis were accepted with a sequence identity > 30% and E-value < 0.001.

DATA AND SOFTWARE AVAILABILITY

New cell phenotype data have been deposited in an online database in conjunction with the research reported in this paper. The raw

image cell phenotypes data are available in the Image Data Resource idr0037 https://idr.openmicroscopy.org/webclient/?

show=screen-2051 following on from the previous dataset https://doi.org/10.17867/10000107. Open access gene expression array

data are available in the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/) under accession number https://www.ebi.ac.

uk/arrayexpress/experiments/E-MTAB-4057/. TheGorilla web-service for GeneOntology analysis is available at http://cbl-gorilla.cs.

technion.ac.il/ and the ReviGO visualization tool is available at http://revigo.irb.hr/.
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