23 research outputs found

    Low-cost, smartphone-based instant three-dimensional registration system for infant functional near-infrared spectroscopy applications

    Get PDF
    Significance: To effectively apply functional near-infrared spectroscopy (fNIRS)/diffuse optical tomography (DOT) devices, a three-dimensional (3D) model of the position of each optode on a subject’s scalp and the positions of that subject’s cranial landmarks are critical. Obtaining this information accurately in infants, who rarely stop moving, is an ongoing challenge. // Aim: We propose a smartphone-based registration system that can potentially achieve a full-head 3D scan of a 6-month-old infant instantly. // Approach: The proposed system is remotely controlled by a custom-designed Bluetooth controller. The scanned images can either be manually or automatically aligned to generate a 3D head surface model. // Results: A full-head 3D scan of a 6-month-old infant can be achieved within 2 s via this system. In testing on a realistic but static infant head model, the average Euclidean error of optode position using this device was 1.8 mm. // Conclusions: This low-cost 3D registration system therefore has the potential to permit accurate and near-instant fNIRS/DOT spatial registration

    Cross-modal functional connectivity supports speech understanding in cochlear implant users

    Get PDF
    Sensory deprivation can lead to cross-modal cortical changes, whereby sensory brain regions deprived of input may be recruited to perform atypical function. Enhanced cross-modal responses to visual stimuli observed in auditory cortex of postlingually deaf cochlear implant (CI) users are hypothesized to reflect increased activation of cortical language regions, but it is unclear if this cross-modal activity is adaptive or mal-adaptive for speech understanding. To determine if increased activation of language regions is correlated with better speech understanding in CI users, we assessed task-related activation and functional connectivity of auditory and visual cortices to auditory and visual speech and non-speech stimuli in CI users (n = 14) and normal-hearing listeners (n = 17) and used functional near-infrared spectroscopy to measure hemodynamic responses. We used visually presented speech and non-speech to investigate neural processes related to linguistic content and observed that CI users show beneficial cross-modal effects. Specifically, an increase in connectivity between the left auditory and visual cortices-presumed primary sites of cortical language processing-was positively correlated with CI users\u27 abilities to understand speech in background noise. Cross-modal activity in auditory cortex of postlingually deaf CI users may reflect adaptive activity of a distributed, multimodal speech network, recruited to enhance speech understanding

    The Surgical Infection Society revised guidelines on the management of intra-abdominal infection

    Get PDF
    Background: Previous evidence-based guidelines on the management of intra-abdominal infection (IAI) were published by the Surgical Infection Society (SIS) in 1992, 2002, and 2010. At the time the most recent guideline was released, the plan was to update the guideline every five years to ensure the timeliness and appropriateness of the recommendations. Methods: Based on the previous guidelines, the task force outlined a number of topics related to the treatment of patients with IAI and then developed key questions on these various topics. All questions were approached using general and specific literature searches, focusing on articles and other information published since 2008. These publications and additional materials published before 2008 were reviewed by the task force as a whole or by individual subgroups as to relevance to individual questions. Recommendations were developed by a process of iterative consensus, with all task force members voting to accept or reject each recommendation. Grading was based on the GRADE (Grades of Recommendation Assessment, Development, and Evaluation) system; the quality of the evidence was graded as high, moderate, or weak, and the strength of the recommendation was graded as strong or weak. Review of the document was performed by members of the SIS who were not on the task force. After responses were made to all critiques, the document was approved as an official guideline of the SIS by the Executive Council. Results: This guideline summarizes the current recommendations developed by the task force on the treatment of patients who have IAI. Evidence-based recommendations have been made regarding risk assessment in individual patients; source control; the timing, selection, and duration of antimicrobial therapy; and suggested approaches to patients who fail initial therapy. Additional recommendations related to the treatment of pediatric patients with IAI have been included. Summary: The current recommendations of the SIS regarding the treatment of patients with IAI are provided in this guideline

    Functional imaging of the developing brain with wearable high-density diffuse optical tomography: a new benchmark for infant neuroimaging outside the scanner environment

    Get PDF
    Studies of cortical function in the awake infant are extremely challenging to undertake with traditional neuroimaging approaches. Partly in response to this challenge, functional near-infrared spectroscopy (fNIRS) has become increasingly common in developmental neuroscience, but has significant limitations including resolution, spatial specificity and ergonomics. In adults, high-density arrays of near-infrared sources and detectors have recently been shown to yield dramatic improvements in spatial resolution and specificity when compared to typical fNIRS approaches. However, most existing fNIRS devices only permit the acquisition of ∼20-100 sparsely distributed fNIRS channels, and increasing the number of optodes presents significant mechanical challenges, particularly for infant applications. A new generation of wearable, modular, high-density diffuse optical tomography (HD-DOT) technologies has recently emerged that overcomes many of the limitations of traditional, fibre-based and low-density fNIRS measurements. Driven by the development of this new technology, we have undertaken the first study of the infant brain using wearable HD-DOT. Using a well-established social stimulus paradigm, and combining this new imaging technology with advances in cap design and spatial registration, we show that it is now possible to obtain high-quality, functional images of the infant brain with minimal constraints on either the environment or on the infant participants. Our results are consistent with prior low-density fNIRS measures based on similar paradigms, but demonstrate superior spatial localization, improved depth specificity, higher SNR and a dramatic improvement in the consistency of the responses across participants. Our data retention rates also demonstrate that this new generation of wearable technology is well tolerated by the infant population

    Management of intra-abdominal infections : recommendations by the WSES 2016 consensus conference

    Get PDF
    This paper reports on the consensus conference on the management of intra-abdominal infections (IAIs) which was held on July 23, 2016, in Dublin, Ireland, as a part of the annual World Society of Emergency Surgery (WSES) meeting. This document covers all aspects of the management of IAIs. The Grading of Recommendations Assessment, Development and Evaluation recommendation is used, and this document represents the executive summary of the consensus conference findings.Peer reviewe

    Social behaviour in adults and infants: behavioural and optical imaging investigations

    No full text
    The ability to respond appropriately to non-verbal cues is essential for communication, constituting an important aspect of social cognition. Laughter provides a fascinating window through which to study social cognition because it is culturally universal and not dependent on language. People automatically try to analyse the laughter they hear because it is always socially meaningful. Conversational laughter is not necessarily “fake laughter”, with the aim to deceive, but can signal different things in different contexts -since it is not associated with a particular emotion. Conversely, spontaneous laughter is related to feelings of emotional release or mirth. The first study in this thesis (Chapter 3) used functional near-infrared spectroscopy (fNIRS) and behavioural methods to examine the neural basis of the behavioural contagion of laughter in the adult population. We demonstrate that the processing of laughter sounds recruits networks previously shown to be related to empathy and mentalising abilities. Furthermore, differences in the levels of cortical activation between laughter types could predict an individual’s perception of how contagious they found the laughter sound. The second part of this thesis outlines my contributions to demonstrate that an advanced fNIRS system, called high-density diffuse optical tomography (HD-DOT), could be applied successfully to study the infant population (Chapter 5). This data from this work was used to exemplify the importance of using robust statistical methods to analyse infant data (Chapter 6). The final study utilised HD-DOT, pupillometry, and behavioural questionnaires to examine infants’ abilities to process and produce laughter (Chapters 7 and 8, respectively). Analysis has revealed that the 6-8-month old infants can perceive the difference between laughter and non-communicative vocalisations at the cortical and pupil level. The functional activation associated with the perception of laughter in the right superior temporal gyrus is correlated with how often the baby laughs, as reported by parental report. Together these studies enrich our understanding of the mechanisms underlying the development of abilities for laughter processing and production throughout our lives
    corecore