141 research outputs found

    Cluster Dynamical Mean Field Theories

    Full text link
    Cluster Dynamical Mean Field Theories are analyzed in terms of their semiclassical limit and their causality properties, and a translation invariant formulation of the cellular dynamical mean field theory, PCDMFT, is presented. The semiclassical limit of the cluster methods is analyzed by applying them to the Falikov-Kimball model in the limit of infinite Hubbard interaction U where they map to different classical cluster schemes for the Ising model. Furthermore the Cutkosky-t'Hooft-Veltman cutting equations are generalized and derived for non translation invariant systems using the Schwinger-Keldysh formalism. This provides a general setting to discuss causality properties of cluster methods. To illustrate the method, we prove that PCDMFT is causal while the nested cluster schemes (NCS) in general and the pair scheme in particular are not. Constraints on further extension of these schemes are discussed.Comment: 26 page

    Computer tomography colonography participation and yield in patients under surveillance for 6-9 mm polyps in a population-based screening trial

    Get PDF
    Purpose: Surveillance CT colonography (CTC) is a viable option for 6-9 mm polyps at CTC screening for colorectal cancer. We established participation and diagnostic yield of surveillance and determined overall yield of CTC screening. Material and methods: In an invitational CTC screening trial 82 of 982 participants harboured 6-9 mm polyps as the largest lesion(s) for which surveillance CTC was advised. Only participants with one or more lesion(s) ≥6 mm at surveillance CTC were offered colonoscopy (OC); 13 had undergone preliminary OC. The surveillance CTC yield was defined as the number of participants with advanced neoplasia in the 82 surveillance participants, and was added to the primary screening yield. Results: Sixty-five of 82 participants were eligible for surveillance CTC of which 56 (86.2 %) participated. Advanced neoplasia was diagnosed in 15/56 participants (26.8 %) and 9/13 (69.2 %) with preliminary OC. Total surveillance yield was 24/82 (29.3 %). No carcinomas were detected. Adding surveillance results to initial screening CTC yield significantly increased the advanced neoplasia yield per 100 CTC participants (6.1 to 8.6; p < 0.001) and per 100 invitees (2.1 to 2.9; p < 0.001). Conclusion: Surveillance CTC for 6-9 mm polyps has a substantial yield of advanced adenomas and significantly increased the CTC yield in population screening. Key Points: • The participation rate in surveillance CT colonography (CTC) is 86 %. • Advanced adenoma prevalence in a 6-9 mm CTC surveillance population is high. • Surveillance CTC significantly increases the yield of population screening by CTC. • Surveillance CTC for 6-9 mm polyps is a safe strategy. • Sur

    Cholecystectomy Risk in Crohn’s Disease Patients After Ileal Resection: a Long-term Nationwide Cohort Study

    Get PDF
    Background: The risk of gallstone disease necessitating cholecystectomy after ileal resection (IR) in Crohn’s disease (CD) patients is not well established. We studied the incidence, cumulative and relative risk of cholecystectomy after IR in CD patients, and associated risk factors. Methods: CD patients with a first IR between 1991 and 2015 were identified in PALGA, a nationwide pathology database in the Netherlands. Details on subsequent cholecystectomy and IR were recorded. Yearly cholecystectomy rates from the general Dutch population were used as a reference. Results: A cohort of 8302 (3466 (41.7%) males) CD patients after IR was identified. During the 11.9 (IQR 6.3–18.0) years median follow-up, the post-IR incidence rate of cholecystectomy was 5.2 (95% CI 3.5–6.4)/1000 persons/year. The cumulative incidence was 0.5% at 1 year, 2.4% at 5 years, 4.6% at 10 years, and 10.3% after 20 years. In multivariable analyses, female sex (HR 1.9, CI 1.5–2.3), a later calendar year of first IR (HR/5-year increase, HR 1.27, CI 1.18–1.35), and ileal re-resection (time-dependent HR 1.37, CI 1.06–1.77) were associated with cholecystectomy. In the last decade, cholecystectomy rates increased and were higher in our postoperative CD population than in the general population (relative incidence ratio 3.13 (CI 2.29–4.28; p < 0.0001) in 2015). Conclusions: Although higher in females, increasing in recent years, and higher than in the general population, the overall risk of cholecystectomy in CD patients following IR is low and routine prophylactic measures seem unwarranted

    Performance of gastrointestinal pathologists within a national digital review panel for Barrett's oesophagus in the Netherlands: Results of 80 prospective biopsy reviews

    Get PDF
    Aims: The histopathological diagnosis of low-grade dysplasia (LGD) in Barrett's oesophagus (BO) is associated with poor interobserver agreement and guidelines dictate expert review. To facilitate nationwide expert review in the Netherlands, a web-based digital review panel has been set up, which currently consists of eight 'core' pathologists. The aim of this study was to evaluate if other pathologists from the Dutch BO expert centres qualify for the expert panel by assessing their performance in 80 consecutive LGD reviews submitted to the panel. Methods: Pathologists independently assessed digital slides in two phases. Both phases consisted of 40 cases, with a group discussion after phase I. For all cases, a previous consensus diagnosis made by five core pathologists was available, which was used as reference. The following criteria were used: (1) percentage of 'indefinite for dysplasia' diagnoses, (2) percentage agreement with consensus diagnosis and (3) proportion of cases with a consensus diagnosis of dysplasia underdiagnosed as non-dysplastic. Benchmarks were based on scores of the core pathologists. Results: After phase I, 1/7 pathologists met the benchmark scor

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
    corecore