267 research outputs found

    Identifying Heavy-Flavor Jets Using Vectors of Locally Aggregated Descriptors

    Full text link
    Jets of collimated particles serve a multitude of purposes in high energy collisions. Recently, studies of jet interaction with the quark-gluon plasma (QGP) created in high energy heavy ion collisions are of growing interest, particularly towards understanding partonic energy loss in the QGP medium and its related modifications of the jet shower and fragmentation. Since the QGP is a colored medium, the extent of jet quenching and consequently, the transport properties of the medium are expected to be sensitive to fundamental properties of the jets such as the flavor of the parton that initiates the jet. Identifying the jet flavor enables an extraction of the mass dependence in jet-QGP interactions. We present a novel approach to tagging heavy-flavor jets at collider experiments utilizing the information contained within jet constituents via the \texttt{JetVLAD} model architecture. We show the performance of this model in proton-proton collisions at center of mass energy s=200\sqrt{s} = 200 GeV as characterized by common metrics and showcase its ability to extract high purity heavy-flavor jet sample at various jet momenta and realistic production cross-sections including a brief discussion on the impact of out-of-time pile-up. Such studies open new opportunities for future high purity heavy-flavor measurements at jet energies accessible at current and future collider experiments.Comment: 18 pages, 6 figures and 3 tables. Accepted by JINS

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Hard Probes at RHIC

    No full text
    Measurements of jets and heavy ïŹ‚avour, the so called hard probes, play a crucial role in understanding properties of hot and dense nuclear matter created in high energy heavy-ion collisions. The measurements at the Relativistic Heavy Ion Collider (RHIC) showed that in central Au+Au collisons at RHIC energy ( √sNN = 200 GeV) the nuclear matter created has properties close to those of perfect liquid, manifests partonic degrees of freedom and is opaque to hard probes. In order to draw quantitative conclusions on properties of this hot and dense nuclear matter reference measurements in proton-proton collisions and d+Au collisions are essential to estimate cold nuclear matter effects. In this proceedings a review of recent results on hard probes measurements in p+p, d+Au and A+A collisions as well as of beam energy dependence of jet quenching from STAR and PHENIX experiments at RHIC is presented

    Hard Probes at RHIC

    No full text
    Measurements of jets and heavy ïŹ‚avour, the so called hard probes, play a crucial role in understanding properties of hot and dense nuclear matter created in high energy heavy-ion collisions. The measurements at the Relativistic Heavy Ion Collider (RHIC) showed that in central Au+Au collisons at RHIC energy ( √sNN = 200 GeV) the nuclear matter created has properties close to those of perfect liquid, manifests partonic degrees of freedom and is opaque to hard probes. In order to draw quantitative conclusions on properties of this hot and dense nuclear matter reference measurements in proton-proton collisions and d+Au collisions are essential to estimate cold nuclear matter effects. In this proceedings a review of recent results on hard probes measurements in p+p, d+Au and A+A collisions as well as of beam energy dependence of jet quenching from STAR and PHENIX experiments at RHIC is presented

    Measurements of azimuthal anisotropies at forward and backward rapidity with muons in high-multiplicity p–Pb collisions at √sNN = 8.16 TeV

    No full text
    The study of the azimuthal anisotropy of inclusive muons produced in p-Pb collisions at sNN−−−√=8.16 TeV, using the ALICE detector at the LHC is reported. The measurement of the second-order Fourier coefficient of the particle azimuthal distribution, v2, is performed as a function of transverse momentum pT in the 0-20% high-multiplicity interval at both forward (2.032 GeV/c. The v2 coefficient of inclusive muons is extracted using two different techniques, namely two-particle cumulants, used for the first time for heavy-flavour measurements, and forward-central two-particle correlations. Both techniques give compatible results. A positive v2 is measured at both forward and backward rapidities with a significance larger than 4.7σ and 7.6σ, respectively, in the interval 2<pT<6 GeV/c. Comparisons with previous measurements in p-Pb collisions at sNN−−−√=5.02 TeV, and with AMPT and CGC-based theoretical calculations are discussed. The findings impose new constraints on the theoretical interpretations of the origin of the collective behaviour in small collision systems

    Measurement of ψ(2S) production as a function of charged-particle pseudorapidity density in pp collisions at √s = 13 TeV and p–Pb collisions at √sNN = 8.16 TeV with ALICE at the LHC

    No full text
    Production of inclusive charmonia in pp collisions at center-of-mass energy of s√ = 13 TeV and p-Pb collisions at center-of-mass energy per nucleon pair of sNN−−−√ = 8.16 TeV is studied as a function of charged-particle pseudorapidity density with ALICE. Ground and excited charmonium states (J/ψ, ψ(2S)) are measured from their dimuon decays in the interval of rapidity in the center-of-mass frame 2.5<ycms<4.0 for pp collisions, and 2.03<ycms<3.53 and −4.46<ycms<−2.96 for p-Pb collisions. The charged-particle pseudorapidity density is measured around midrapidity (|η|<1.0). In pp collisions, the measured charged-particle multiplicity extends to about six times the average value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding to about three (four) times the average is reached. The ψ(2S) yield increases with the charged-particle pseudorapidity density. The ratio of ψ(2S) over J/ψ yield does not show a significant multiplicity dependence in either colliding system, suggesting a similar behavior of J/ψ and ψ(2S) yields with respect to charged-particle pseudorapidity density. Results for the ψ(2S) yield and its ratio with respect to J/ψ agree with available model calculations

    Measurement of the angle between jet axes in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    This letter presents the first measurement of the angle between different jet axes (denoted as ΔR) in Pb−Pb collisions. The measurement is carried out in the 0−10% most-central events at sNN−−−√=5.02 TeV. Jets are assembled by clustering charged particles at midrapidity using the anti-kT algorithm with resolution parameters R=0.2 and 0.4 and transverse momenta in the intervals 40<pchjetT<140 GeV/c and 80<pchjetT<140 GeV/c, respectively. Measurements at these low transverse momenta enhance the sensitivity to quark−gluon plasma (QGP) effects. A comparison to models implementing various mechanisms of jet energy loss in the QGP shows that the observed narrowing of the Pb−Pb distribution relative to pp can be explained if quark-initiated jets are more likely to emerge from the medium than gluon-initiated jets. These new measurements discard intra-jet pT broadening as described in a model calculation with the BDMPS formalism as the main mechanism of energy loss in the QGP. The data are sensitive to the angular scale at which the QGP can resolve two independent splittings, favoring mechanisms that incorporate incoherent energy loss

    Suppression of Λ(1520) resonance production in central Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The production yield of the Λ(1520) baryon resonance is measured at mid-rapidity in Pb-Pb collisions at sNN−−−√ = 2.76 TeV with the ALICE detector at the LHC. The measurement is performed in the Λ(1520)→pK− (and charge conjugate) hadronic decay channel as a function of the transverse momentum (pT) and collision centrality. The pT-integrated production rate of Λ(1520) relative to Λ in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at the LHC and the first 3σ evidence of Λ(1520) suppression within a single collision system. The measured Λ(1520)/Λ ratio in central collisions is smaller than the value predicted by the statistical hadronisation model calculations. The shape of the measured pT distribution and the centrality dependence of the suppression are reproduced by the EPOS3 Monte Carlo event generator. The measurement adds further support to the formation of a dense hadronic phase in the final stages of the evolution of the fireball created in heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at √s = 13 TeV and in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s√=13 TeV and p−Pb collisions at sNN−−−√=5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle Δφ and pseudorapidity separation Δη for pairs of primary charged particles within the pseudorapidity interval |η|<0.9 and the transverse-momentum interval 1<pT<4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6<|Δη|<1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events
    • 

    corecore