9 research outputs found

    Moving in the anthropocene: global reductions in terrestrial mammalian movements

    Get PDF
    Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission

    Single nucleotide polymorphisms in Brahman steers and their association with carcass and tenderness traits

    No full text
    Data from purebred Brahman steers (N = 467) were used to study the association of single nucleotide polymorphisms (SNP) with carcass traits and measures of tenderness. Fall weaned calves were grazed and fed in a subtropical environment and then harvested for processing in a commercial facility. Carcass data were recorded 24 h postmortem. Muscle samples and primal ribs were obtained to measure calpastatin activity and shear force. DNA was used to determine genotypes of thyroglobulin (TG5), calpastatin (CAST) and H-calpain (CAPN 316 and CAPN 4751) SNP. Minor allele frequencies for CAST, CAPN 316 and CAPN 4751 were 0.342, 0.031, and 0.051, respectively. CAST genotypes were associated with calpastatin enzyme activity (P \u3c 0.01) and shear force of steaks aged for 14-day postmortem (P \u3c 0.05). CAPN 316 genotypes were also associated with variation in shear force of steaks aged for 14 days (P \u3c 0.05). CAPN 4751 genotypes approached significance for association with shear force of steaks after 7 and 14 days (P \u3c 0.08). Genotypes for TG5 were non-polymorphic (i.e., minor allele frequency = 0.004) and omitted from further analyses. Neither CAST nor CAPN SNP was associated with variation in other carcass traits

    Effects of body size on estimation of mammalian area requirements

    Get PDF
    Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals 1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum

    Terrestrial Mammal Displacement Data

    No full text
    This data file includes median (0.5 quantile) and long-distance (0.95 quantile) displacement distances for 803 individuals spanning 57 terrestrial mammal species. Also included are mean body mass, trophic guild, mean Normalised Difference Vegetation Index (NDVI) and mean human footprint index values for each individual. Displacement values are in kilometres and body mass values are in grams. The displacement and body mass values are log10 transformed and the NDVI values are scaled. Please note that each row within a time interval represents a different individual. Please see the associated manuscript and supplementary materials for details on the data sources and calculation methods

    Data from: Moving in the Anthropocene: global reductions in terrestrial mammalian movements

    No full text
    Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission
    corecore