711 research outputs found
Differential Relationship between Physical Activity and Intake of Added Sugar and Nutrient-Dense Foods: A Cross-Sectional Analysis
A curvilinear relationship exists between physical activity (PA) and dietary energy intake (EI), which is reduced in moderately active when compared to inactive and highly active individuals, but the impact of PA on eating patterns remains poorly understood. Our goal was to establish the relationship between PA and intake of foods with varying energy and nutrient density. Data from the 2009–2010 United States National Health and Nutrition Examination Survey were used to include a Dietary Screener Questionnaire for estimated intakes of added sugar, fruits and vegetables, whole grains, fiber, and dairy. Participants (n = 4766; 49.7% women) were divided into sex-specific quintiles based on their habitual PA. After adjustment for age, body mass index, household income, and education, intakes were compared between PA quartiles, using the lowest activity quintile (Q1) as reference. Women in the second to fourth quintile (Q2-Q4) consumed less added sugar from sugary foods (+2 tsp/day) and from sweetened beverages (+2 tsp/day; all p \u3c 0.05 vs. Q1). In men, added sugar intake was elevated in the highest activity quintile (Q5: +3 ± 1 tsp/day, p = 0.007 vs. Q1). Fruit and vegetable intake increased (women: Q1-Q4 +0.3 ± 0.1 cup eq/day; p \u3c 0.001; men: Q1-Q3 +0.3 ± 0.1 cup eq/day, p = 0.002) and stagnated in higher quintiles. Dairy intake increased with PA only in men (Q5: +0.3 ± 0.1 cup eq/day, p \u3c 0.001 vs. Q1). Results demonstrate a differential relationship between habitual PA and dietary intakes, whereby moderate but not necessarily highest PA levels are associated with reduced added sugar and increased nutrient-dense food consumption. Future research should examine specific mechanisms of food choices at various PA levels to ensure dietary behaviors (i.e., increased sugary food intake) do not negate positive effects of PA
Ofd1 Controls Dorso-Ventral Patterning and Axoneme Elongation during Embryonic Brain Development.
Oral-facial-digital type I syndrome (OFDI) is a human X-linked dominant-male-lethal developmental disorder caused by mutations in the OFD1 gene. Similar to other inherited disorders associated to ciliary dysfunction OFD type I patients display neurological abnormalities. We characterized the neuronal phenotype that results from Ofd1 inactivation in early phases of mouse embryonic development and at post-natal stages. We determined that Ofd1 plays a crucial role in forebrain development, and in particular, in the control of dorso-ventral patterning and early corticogenesis. We observed abnormal activation of Sonic hedgehog (Shh), a major pathway modulating brain development. Ultrastructural studies demonstrated that early Ofd1 inactivation results in the absence of ciliary axonemes despite the presence of mature basal bodies that are correctly orientated and docked. Ofd1 inducible-mediated inactivation at birth does not affect ciliogenesis in the cortex, suggesting a developmental stage-dependent role for a basal body protein in ciliogenesis. Moreover, we showed defects in cytoskeletal organization and apical-basal polarity in Ofd1 mutant embryos, most likely due to lack of ciliary axonemes. Thus, the present study identifies Ofd1 as a developmental disease gene that is critical for forebrain development and ciliogenesis in embryonic life, and indicates that Ofd1 functions after docking and before elaboration of the axoneme in vivo
Recommended from our members
You are the only possible oracle: Effective test selection for end users of interactive machine learning systems
How do you test a program when only a single user, with no expertise in software testing, is able to determine if the program is performing correctly? Such programs are common today in the form of machine-learned classifiers. We consider the problem of testing this common kind of machine-generated program when the only oracle is an end user: e.g., only you can determine if your email is properly filed. We present test selection methods that provide very good failure rates even for small test suites, and show that these methods work in both large-scale random experiments using a “gold standard” and in studies with real users. Our methods are inexpensive and largely algorithm-independent. Key to our methods is an exploitation of properties of classifiers that is not possible in traditional software testing. Our results suggest that it is plausible for time-pressured end users to interactively detect failures—even very hard-to-find failures—without wading through a large number of successful (and thus less useful) tests. We additionally show that some methods are able to find the arguably most difficult-to-detect faults of classifiers: cases where machine learning algorithms have high confidence in an incorrect result
Computer simulation of carbonate platform and basin systems
The carbonate platform depositional system is sensitive to many variables, a number of which are interrelated, making it difficult to clarify how each variable affects the growth pattern of a carbonate platform. A simple computer model that simulates the carbonate platform depositional system provides an efficient means of overcoming this problem. Individual variables, such as rates of sediment production and erosion, subsidence, and eustatic sea-level cycles, are changed progressively, whereas all other variables are held constant. Changes in relative sea level (a combination of oscillatory eustatic changes, tectonic subsidence, and sediment loading) appear to exert the strongest control on the growth of carbonate platforms by determining how much sediment can accumulate on the platform top, which to some degree (along with the rate of sediment removal) influences how much sediment is available for progradation of the platform. This quantitative forward-modeling approach provides a valuable learning tool and facilitates a precise understanding of a complicated system. A forward model, such as the one presented here, can provide a basis for creating an inverse model, which can be used to constrain the variables (sediment production rate, subsidence curve, and sea-level history) that led to the cross-sectional geometry observed in the field or in a seismic section
Computer simulation of carbonate platform and basin systems
The carbonate platform depositional system is sensitive to many variables, a number of which are interrelated, making it difficult to clarify how each variable affects the growth pattern of a carbonate platform. A simple computer model that simulates the carbonate platform depositional system provides an efficient means of overcoming this problem. Individual variables, such as rates of sediment production and erosion, subsidence, and eustatic sea-level cycles, are changed progressively, whereas all other variables are held constant. Changes in relative sea level (a combination of oscillatory eustatic changes, tectonic subsidence, and sediment loading) appear to exert the strongest control on the growth of carbonate platforms by determining how much sediment can accumulate on the platform top, which to some degree (along with the rate of sediment removal) influences how much sediment is available for progradation of the platform. This quantitative forward-modeling approach provides a valuable learning tool and facilitates a precise understanding of a complicated system. A forward model, such as the one presented here, can provide a basis for creating an inverse model, which can be used to constrain the variables (sediment production rate, subsidence curve, and sea-level history) that led to the cross-sectional geometry observed in the field or in a seismic section
Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene
We assess early-to-middle Eocene seawater neodymium (Nd) isotope records from seven Southern Ocean deep-sea drill sites to evaluate the role of Southern Ocean circulation in long-term Cenozoic climate change. Our study sites are strategically located on either side of the Tasman Gateway and are positioned at a range of shallow (Nd(t) = −9.3 ± 1.5). IODP Site U1356 off the coast of Adélie Land, a locus of modern-day Antarctic Bottom Water production, is identified as a site of persistent deep water formation from the early Eocene to the Oligocene. East of the Tasman Gateway an additional local source of intermediate/deep water formation is inferred at ODP Site 277 in the SW Pacific Ocean (εNd(t) = −8.7 ± 1.5). Antarctic-proximal shelf sites (ODP Site 1171 and Site U1356) reveal a pronounced erosional event between 49 and 48 Ma, manifested by ~2 εNd unit negative excursions in seawater chemistry toward the composition of bulk sediments at these sites. This erosional event coincides with the termination of peak global warmth following the Early Eocene Climatic Optimum and is associated with documented cooling across the study region and increased export of Antarctic deep waters, highlighting the complexity and importance of Southern Ocean circulation in the greenhouse climate of the Eocene
Self-organization with traveling waves: A case for a convective torus
A traveling wave of BaSO4 in the chlorite-thiourea reaction has shown concentric precipitation patterns upon being triggered by the autocatalyst HOCl. The precipitation patterns show circular rings of alternate null and full precipitation regions. This self-organization appears to be the result of the formation of a convective torus. The formation of the convective torus can be described as a Benard-Marangoni instability with lateral heating
Paleophysical Oceanography with an Emphasis on Transport Rates
Paleophysical oceanography is the study of the behavior of the fluid ocean of the past, with a specific emphasis on its climate implications, leading to a focus on the general circulation. Even if the circulation is not of primary concern, heavy reliance on deep-sea cores for past climate information means that knowledge of the oceanic state when the sediments were laid down is a necessity. Like the modern problem, paleoceanography depends heavily on observations, and central difficulties lie with the very limited data types and coverage that are, and perhaps ever will be, available. An approximate separation can be made into static descriptors of the circulation (e.g., its water-mass properties and volumes) and the more difficult problem of determining transport rates of mass and other properties. Determination of the circulation of the Last Glacial Maximum is used to outline some of the main challenges to progress. Apart from sampling issues, major difficulties lie with physical interpretation of the proxies, transferring core depths to an accurate timescale (the “age-model problem”), and understanding the accuracy of time-stepping oceanic or coupled-climate models when run unconstrained by observations. Despite the existence of many plausible explanatory scenarios, few features of the paleocirculation in any period are yet known with certainty.National Science Foundation (U.S.) (grant OCE-0645936
- …
