45 research outputs found

    Synthesis and catalysis of chemically reduced metal–metalloid amorphous alloys

    Get PDF
    This is the published version. Copyright 2012 Royal Society of ChemistryAmorphous alloys structurally deviate from crystalline materials in that they possess unique short-range ordered and long-range disordered atomic arrangement. They are important catalytic materials due to their unique chemical and structural properties including broadly adjustable composition, structural homogeneity, and high concentration of coordinatively unsaturated sites. As chemically reduced metal–metalloid amorphous alloys exhibit excellent catalytic performance in applications such as efficient chemical production, energy conversion, and environmental remediation, there is an intense surge in interest in using them as catalytic materials. This critical review summarizes the progress in the study of the metal–metalloid amorphous alloy catalysts, mainly in recent decades, with special focus on their synthetic strategies and catalytic applications in petrochemical, fine chemical, energy, and environmental relevant reactions. The review is intended to be a valuable resource to researchers interested in these exciting catalytic materials. We concluded the review with some perspectives on the challenges and opportunities about the future developments of metal–metalloid amorphous alloy catalysts

    Effect of nitrate metal (Ce, Cu, Mn and Co) precursors for the total oxidation of carbon monoxide

    Get PDF
    The ambient temperature carbon monoxide oxidation is one of the important topics in the present scenario. In this paper, we prepared various types of catalysts from the precursors of cobalt nitrate, cerium nitrate, copper nitrate and manganese nitrate for the oxidation of CO. Among the prepared catalysts, the cerium nitrate precursor showed the best performance for CO oxidation at low temperature. The activity of the catalysts was measured in different calcination conditions like stagnant air, flowing air and reactive calcination (4.5% CO in air). The activity test was done in the reactor under the following reaction conditions: 100 mg of catalyst, 2.5% CO in the air and the reaction temperature was increased from ambient to a higher value at which complete oxidation of CO was achieved. The characterization of the catalyst was done by several techniques like XRD, FTIR, SEM-EDX, XPS and BET. The order of activity for different catalysts was as follows: Ce-Oxide > Mn-Oxide > Cu-Oxide > Co-Oxide
    corecore