435 research outputs found

    Response of river-dominated delta channel networks to permanent changes in river discharge

    Get PDF
    Using numerical experiments, we investigate how river-dominated delta channel networks are likely to respond to changes in river discharge predicted to occur over the next century as a result of environmental change. Our results show for a change in discharge up to 60% of the initial value, a decrease results in distributary abandonment in the delta, whereas an increase does not significantly affect the network. However, an increase in discharge beyond a threshold of 60% results in channel creation and an increase in the density of the distributary network. This behavior is predicted by an analysis of an individual bifurcation subject to asymmetric water surface slopes in the bifurcate arms. Given that discharge in most river basins will change by less than 50% in the next century, our results suggest that deltas in areas of increased drought will be more likely to experience significant rearrangement of the delta channel network. Copyright 2010 by the American Geophysical Union

    Untersuchungen zur Reliabilität und Validität der dreidimensionalen Kiefergelenkfunktionsanalyse mittels Zebris WinJaw-System

    Get PDF
    Einleitung: Bei Behandlung von Patienten wird zunehmend vermehrt das Augenmerk auf Funktionsstörungen gelegt. Das Zebrissystem wurde hier auf Intra- und Intersessionreliabilität sowie Validität geprüft. Methodik: Es wurden 30 gesunde Probanden 2 mal im Abstand von 7 Tagen untersucht. An jedem Tag erfolgte eine Vermessung der Unterkieferbeweglichkeit mittels Messschieber und jeweils drei Messzyklen mit dem Zebrissystem. Am ersten Untersuchungstag wurde initial eine orientierende manualmedizinische Untersuchung der HWS und der Kiefergelenke durchgeführt. Die Berechnung der Reliabilität und der Korrelation erfolgte mittels Intraklassen-Korrelations-Koeffizient, t-Test nach Student und dem empirischem Korrelationskoeffizient nach Bravais-Pearson. Ergebnisse: Es zeigten sich ausgezeichnete Werte für die Intra- und Intersessionreliabilität für das Zebrissystem. Die Intersessionreliabilität des Messschiebers ist ebenfalls ausgezeichnet. Die Korrelation zwischen manueller Vermessung und Zebrissystem erreicht mittlere bzw. hohe Werte mit Ausnahme der Mundöffnung. Probanden mit gering und stark ausgeprägtem Overbite wiesen mittlere bis hohe Werte auf. Lediglich die Subgruppe mit mittlerem Overbite zeigte negative Korrelationen. Diskussion: Das an der Frontzahnreihe angebaute Attachement stört die Kieferbewegungen bei den Personen mit mittlerem Overbite am deutlichsten. Alle anderen Probanden bewegten den Unterkiefer gleichmäßig. Die Korrelationen im zweiten und dritten Messdurchgang zeigten durchgängig höhere Werte als beim ersten. Schlussfolgerungen: Das Zebrissystem kann zur Verlaufsbeobachtung bei Kiefergelenkstörungen Verwendung finden. Hinsichtlich der Mundöffnung kann das System nicht uneingeschränkt empfohlen werden. Zur Optimierung der Validität der Zebrismessung sollte ausgiebig der Bewegungsablauf geübt oder die erste Messung verworfen werden. Für den klinischen Alltag ist der Messschieber der apparativen Funktionsanalyse überlegen

    Demographic and Socioeconomic Factors Associated With HPV Vaccination in Georgia’s South Central Health District

    Get PDF
    Background: Human Papillomavirus (HPV) subtypes are the primary cause of cervical cancer. Despite introduction of the HPV vaccine in 2006, vaccination percentages remain low across Georgia counties. The primary objective of this research was to conduct a descriptive epidemiological study of HPV vaccination coverage among individuals in the South Central Health District (SCHD) to provide guidance for targeted vaccination campaigns aimed at adolescents residing in rural communities. Methods: Data from the Georgia Registry of Immunization Transactions and Services and AEGIS.net, Inc. were used to analyze demographic and socioeconomic factors associated with HPV vaccine uptake among individuals visiting county health departments in the SCHD from 2007-2014. Descriptive statistics were used to evaluate the relationship between sex, age at first vaccination, county of vaccine administration, race, and insurance status to vaccine series completion. Results: In the SCHD, Johnson County had the highest completion percentage (50%); Montgomery County had the lowest (20%). However, Montgomery County had the fastest time to completion (334 days). Throughout the district, males were fully vaccinated at much lower percentages than females (p \u3c 0.001). Race was a significant variable (p=0.011) for vaccine completion. Compared to other racial groups, more White individuals completed the HPV vaccine. Absolute counts of HPV vaccine doses peaked in the study population during 2010 (n=507). Conclusions: Due to overall low rates, community-based intervention methods should be considered to increase HPV vaccine uptake across the SCHD. School-based programs may be useful in targeting at-risk populations and increasing rates of HPV vaccine initiation and completion. Expanded efforts are needed to determine the best structure for effective school-based programs

    Simulations of multiphase turbulence in jet cocoons

    Get PDF
    M. Krause and P. Alexander, 'Simulations of multiphase turbulence in jet cocoons', Monthly Notices of the Royal Astronomical Society, Vol. 376, pp. 465-478, April 2007, the version of record is available online at doi: 10.1111/j.1365-2966.2007.11480.x. Published by Oxford University Press on behalf of the Royal Astronomical Society. © 2007 The Authors. Journal compilation © 2007 RASThe interaction of optically emitting clouds with warm X-ray gas and hot, tenuous radio plasma in radio jet cocoons is modelled by 2D compressible hydrodynamic simulations. The initial setup is the Kelvin–Helmholtz instability at a contact surface of density contrast 104. The denser medium contains clouds of higher density. Optically thin radiation is realized via a cooling source term. The cool phase effectively extracts energy from the other gas which is both, radiated away and used for acceleration of the cold phase. This increases the system’s cooling rate substantially and leads to a massively amplified cold mass dropout. We show that it is feasible, given small seed clouds of the order of 100 M, that all of the optically emitting gas in a radio jet cocoon may be produced by this mechanism on the propagation time-scale of the jet. The mass is generally distributed as T−1/2 with temperature, with a prominent peak at 14 000 K. This peak is likely to be related to the counteracting effects of shock heating and a strong rise in the cooling function. The volume filling factor of cold gas in this peak is of the order of 10−5–10−3 and generally increases during the simulation time. The simulations tend towards an isotropic scale-free Kolmogorov-type energy spectrum over the simulation time-scale. We find the same Mach-number density relation as Kritsuk & Norman and show that this relation may explain the velocity widths of emission lines associated with high-redshift radio galaxies, if the environmental temperature is lower, or the jet-ambient density ratio is less extreme than in their low-redshift counterparts.Peer reviewe

    A Pilot Study on the Association of Mitochondrial Oxygen Metabolism and Gas Exchange During Cardiopulmonary Exercise Testing: Is There a Mitochondrial Threshold?

    Get PDF
    Background: Mitochondria are the key players in aerobic energy generation via oxidative phosphorylation. Consequently, mitochondrial function has implications on physical performance in health and disease ranging from high performance sports to critical illness. The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) allows in vivo measurements of mitochondrial oxygen tension (mitoPO 2 ). Hitherto, few data exist on the relation of mitochondrial oxygen metabolism and ergospirometry-derived variables during physical performance. This study investigates the association of mitochondrial oxygen metabolism with gas exchange and blood gas analysis variables assessed during cardiopulmonary exercise testing (CPET) in aerobic and anaerobic metabolic phases. Methods: Seventeen volunteers underwent an exhaustive CPET (graded multistage protocol, 50 W/5 min increase), of which 14 were included in the analysis. At baseline and for every load level PpIX-TSLT-derived mitoPO 2 measurements were performed every 10 s with 1 intermediate dynamic measurement to obtain mitochondrial oxygen consumption and delivery (mito V . O 2 , mito D . O 2 ). In addition, variables of gas exchange and capillary blood gas analyses were obtained to determine ventilatory and lactate thresholds (VT, LT). Metabolic phases were defined in relation to VT1 and VT2 (aerobic

    Propiconazole Is a Specific and Accessible Brassinosteroid (BR) Biosynthesis Inhibitor for Arabidopsis and Maize

    Get PDF
    Brassinosteroids (BRs) are steroidal hormones that play pivotal roles during plant development. In addition to the characterization of BR deficient mutants, specific BR biosynthesis inhibitors played an essential role in the elucidation of BR function in plants. However, high costs and limited availability of common BR biosynthetic inhibitors constrain their key advantage as a species-independent tool to investigate BR function. We studied propiconazole (Pcz) as an alternative to the BR inhibitor brassinazole (Brz). Arabidopsis seedlings treated with Pcz phenocopied BR biosynthetic mutants. The steady state mRNA levels of BR, but not gibberellic acid (GA), regulated genes increased proportional to the concentrations of Pcz. Moreover, root inhibition and Pcz-induced expression of BR biosynthetic genes were rescued by 24epi-brassinolide, but not by GA3 co-applications. Maize seedlings treated with Pcz showed impaired mesocotyl, coleoptile, and true leaf elongation. Interestingly, the genetic background strongly impacted the tissue specific sensitivity towards Pcz. Based on these findings we conclude that Pcz is a potent and specific inhibitor of BR biosynthesis and an alternative to Brz. The reduced cost and increased availability of Pcz, compared to Brz, opens new possibilities to study BR function in larger crop species

    Feast and Famine: Regulation of Black Hole Growth in Low Redshift Galaxies

    Full text link
    We analyze the observed distribution of Eddington ratios as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation in their central kiloparsec regions, and is characterized by a broad log-normal distribution of accretion rates peaked at about one percent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows no further dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations, and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate onto black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power-law and the decrease in the accretion rate onto black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.Comment: 22 pages, 11 figures, accepted by MNRAS (revised version incorporates an improved correction for star formation contribution to L[OIII]

    Knowledge transfer & exchange through social networks: building foundations for a community of practice within tobacco control

    Get PDF
    BACKGROUND: Health services and population health innovations advance when knowledge transfer and exchange (KTE) occurs among researchers, practitioners, policy-makers and consumers using high-quality evidence. However, few KTE models have been evaluated in practice. Communities of practice (CoP) – voluntary, self-organizing, and focused groups of individuals and organizations – may provide one option. This paper outlines an approach to lay the foundation for a CoP within the area of Web-assisted tobacco interventions (WATI). The objectives of the study were to provide a data-driven foundation to inform decisions about organizing a CoP within the geographically diverse, multi-disciplinary WATI group using evaluation and social network methodologies. METHODS: A single-group design was employed using a survey of expectations, knowledge, and interpersonal WATI-related relationships administered prior to a meeting of the WATI group followed by a 3-week post-meeting Web survey to assess short-term impact on learning and networking outcomes. RESULTS: Twenty-three of 27 WATI attendees (85%) from diverse disciplinary and practice backgrounds completed the baseline survey, with 21 (91%) of those participants completing the three-week follow-up. Participants had modest expectations of the meeting at baseline. A social network map produced from the data illustrated a centralized, yet sparse network comprising of interdisciplinary teams with little trans-sectoral collaboration. Three-week follow-up survey results showed that participants had made new network connections and had actively engaged in KTE activities with WATI members outside their original network. CONCLUSION: Data illustrating both the shape and size of the WATI network as well as member's interests and commitment to KTE, when shared and used to frame action steps, can positively influence the motivation to collaborate and create communities of practice. Guiding KTE planning through blending data and theory can create more informed transdisciplinary and trans-sectoral collaboration environments

    The spectra and energies of classical double radio lobes

    Get PDF
    We compare two temporal properties of classical double radio sources: i) radiative lifetimes of synchrotron-emitting particles and ii) dynamical source ages. We discuss how these can be quite discrepant from one another, rendering use of the traditional spectral ageing method inappropriate: we contend that spectral ages give meaningful estimates of dynamical ages only when these ages are << 10^7 years. In juxtaposing the fleeting radiative lifetimes with source ages which are significantly longer, a refinement of the paradigm for radio source evolution is required. The changing spectra along lobes are explained, not predominantly by synchrotron ageing but, by gentle gradients in a magnetic field mediated by a low-gamma matrix which illuminates an energy-distribution of particles, controlled largely by classical synchrotron loss in the high magnetic field of the hotspot. The energy in the particles is an order of magnitude higher than that inferred from the minimum-energy estimate, implying that the jet-power is of the same order as the accretion luminosity produced by the quasar central engine. This refined paradigm points to a resolution of the findings of Rudnick et al (1994) and Katz-Stone & Rudnick (1994) that both the Jaffe-Perola and Kardashev-Pacholczyk model spectra are invariably poor descriptions of the curved spectral shape of lobe emission, and indeed that for Cygnus A all regions of the lobes are characterised by a `universal spectrum'. [abridged]Comment: LaTeX, 4 figures. To appear in A

    The Formation of a Disk Galaxy within a Growing Dark Halo

    Full text link
    We present a dynamical model for the formation and evolution of a massive disk galaxy, within a growing dark halo whose mass evolves according to cosmological simulations of structure formation. The galactic evolution is simulated with a new 3D chemo-dynamical code, including dark matter, stars and a multi-phase ISM. The simulations start at redshift z=4.85 with a small dark halo in a LCDM universe and we follow the evolution until the present epoch. The energy release by massive stars and SNe prevents a rapid collapse of the baryonic matter and delays the maximum star formation until z=1. The galaxy forms radially from inside-out and vertically from halo to disk. The first galactic component that forms is the halo, followed by the bulge, the disk-halo transition region, and the disk. At z=1, a bar begins to form which later turns into a triaxial bulge. There is a pronounced deficiency of low-metallicity disk stars due to pre-enrichment of the disk ISM with metal-rich gas from the bulge and inner disk (G-dwarf problem). The mean rotation and the distribution of orbital eccentricities for all stars as a function of metallicity are not very different from those observed in the solar neighbourhood, showing that homogeneous collapse models are oversimplified. The approach presented here provides a detailed description of the formation and evolution of an isolated disk galaxy in a LCDM universe, yielding new information about the kinematical and chemical history of the stars and the ISM, but also about the evolution of the luminosity, the colours and the morphology of disk galaxies.Comment: 23 pages, LaTeX, 18 figures, A&A accepted, a high resolution version of the paper can be found at http://www.astro.unibas.ch/leute/ms.shtm
    corecore