44 research outputs found

    Genome-wide burden and association analyses implicate copy number variations in asthma risk among children and young adults from Latin America.

    Get PDF
    The genetic architecture of asthma was relatively well explored. However, some work remains in the field to improve our understanding on asthma genetics, especially in non-Caucasian populations and with regards to commonly neglected genetic variants, such as Copy Number Variations (CNVs). In the present study, we investigated the contribution of CNVs on asthma risk among Latin Americans. CNVs were inferred from SNP genotyping data. Genome wide burden and association analyses were conducted to evaluate the impact of CNVs on asthma outcome. We found no significant difference in the numbers of CNVs between asthmatics and non-asthmatics. Nevertheless, we found that CNVs are larger in patients then in healthy controls and that CNVs from cases intersect significantly more genes and regulatory elements. We also found that a deletion at 6p22.1 is associated with asthma symptoms in children from Salvador (Brazil) and in young adults from Pelotas (Brazil). To support our results, we conducted an in silico functional analysis and found that this deletion spans several regulatory elements, including two promoter elements active in lung cells. In conclusion, we found robust evidence that CNVs could contribute for asthma susceptibility. These results uncover a new perspective on the influence of genetic factors modulating asthma risk

    Cell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex

    Get PDF
    This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the number and distribution of boutons from the ventral posterior medial (VPM) and posteromedial (POm) nuclei potentially innervating dendritic arbors of excitatory neurons located in layers (L)2–6 of a cortical column in rat somatosensory cortex. We found that 1) all types of excitatory neurons potentially receive substantial TC input (90–580 boutons per neuron); 2) pyramidal neurons in L3–L6 receive dual TC input from both VPM and POm that is potentially of equal magnitude for thick-tufted L5 pyramidal neurons (ca. 300 boutons each from VPM and POm); 3) L3, L4, and L5 pyramidal neurons have multiple (2–4) subcellular TC innervation domains that match the dendritic compartments of pyramidal cells; and 4) a subtype of thick-tufted L5 pyramidal neurons has an additional VPM innervation domain in L4. The multiple subcellular TC innervation domains of L5 pyramidal neurons may partly explain their specific action potential patterns observed in vivo. We conclude that the substantial potential TC innervation of all excitatory neuron types in a cortical column constitutes an anatomical basis for the initial near-simultaneous representation of a sensory stimulus in different neuron types
    corecore