2,092 research outputs found

    RankMerging:a supervised learning-to-rank framework to predict links in large social networks

    Get PDF
    Uncovering unknown or missing links in social networks is a difficult task because of their sparsity and because links may represent different types of relationships, characterized by different structural patterns. In this paper, we define a simple yet efficient supervised learning-to-rank framework, called RankMerging, which aims at combining information provided by various unsupervised rankings. We illustrate our method on three different kinds of social networks and show that it substantially improves the performances of unsupervised methods of ranking as well as standard supervised combination strategies. We also describe various properties of RankMerging, such as its computational complexity, its robustness to feature selection and parameter estimation and discuss its area of relevance: the prediction of an adjustable number of links on large networks

    Dichloro Butenediamides as Irreversible Site‐Selective Protein Conjugation Reagent

    Get PDF
    We describe maleic-acid derivatives as robust cysteine-selective reagents for protein labelling with comparable kinetics and superior stability relative to maleimides. Diamide and amido-ester derivatives proved to be efficient protein-labelling species with a common mechanism in which a spontaneous cyclization occurs upon addition to cysteine. Introduction of chlorine atoms in their structures triggers ring hydrolysis or further conjugation with adjacent residues, which results in conjugates that are completely resistant to retro-Michael reactions in the presence of biological thiols and human plasma. By controlling the microenvironment of the reactive site, we can control selectivity towards the hydrolytic pathway, forming homogeneous conjugates. The method is applicable to several scaffolds and enables conjugation of different payloads. The synthetic accessibility of these reagents and the mild conditions required for fast and complete conjugation together with the superior stability of the conjugates make this strategy an important alternative to maleimides in bioconjugation

    Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV

    Get PDF
    Results are presented from a search for physics beyond the standard model based on events with large missing transverse energy, at least three jets, and at least one, two, or three b-quark jets. The study is performed using a sample of proton-proton collision data collected at sqrt(s) = 7 TeV with the CMS detector at the LHC in 2011. The integrated luminosity of the sample is 4.98 inverse femtobarns. The observed number of events is found to be consistent with the standard model expectation, which is evaluated using control samples in the data. The results are used to constrain cross sections for the production of supersymmetric particles decaying to b-quark-enriched final states in the context of simplified model spectra.Comment: Submitted to Physical Review

    Low-Resolution Molecular Models Reveal the Oligomeric State of the PPAR and the Conformational Organization of Its Domains in Solution

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid and carbohydrate metabolism, and are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPARγ and RXRα is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood. Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPARγ alone and in the presence of retinoid X receptor (RXR). The results reveal that, in contrast with other studied nuclear receptors, which predominantly form dimers in solution, hPPARγ remains in the monomeric form by itself but forms heterodimers with hRXRα. The low-resolution models of hPPARγ/RXRα complexes predict significant changes in opening angle between heterodimerization partners (LBD) and extended and asymmetric shape of the dimer (LBD-DBD) as compared with X-ray structure of the full-length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly, hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less solvent-accessible conformation of the receptor complex

    Influence of Ecto-Nucleoside Triphosphate Diphosphohydrolase Activity on Trypanosoma cruzi Infectivity and Virulence

    Get PDF
    The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, an endemic zoonosis present in some countries of South and Central Americas. The World Health Organization estimates that 100 million people are at risk of acquiring this disease. The infection affects mainly muscle tissues in the heart and digestive tract. There are no vaccines or effective treatment, especially in the chronic phase when most patients are diagnosed, which makes a strong case for the development of new drugs to treat the disease. In this work we evaluate a family of proteins called Ecto-Nucleoside-Triphosphate-Diphosphohydrolase (Ecto-NTPDase) as new chemotherapy target to block T. cruzi infection in mammalian cells and in mice. We have used inhibitors and antibodies against this protein and demonstrated that T. cruzi Ecto-NTPDases act as facilitators of infection in mammalian cells and virulence factors in mice model. Two of the drugs used in this study (Suramin and Gadolinium) are currently used for other diseases in humans, supporting the possibility of their use in the treatment of Chagas disease

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p
    • 

    corecore