35 research outputs found

    A modified model for the Lobula Giant Movement Detector and its FPGA implementation

    Get PDF
    The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron located in the Lobula layer of the Locust nervous system. The LGMD increases its firing rate in response to both the velocity of an approaching object and the proximity of this object. It has been found that it can respond to looming stimuli very quickly and trigger avoidance reactions. It has been successfully applied in visual collision avoidance systems for vehicles and robots. This paper introduces a modified neural model for LGMD that provides additional depth direction information for the movement. The proposed model retains the simplicity of the previous model by adding only a few new cells. It has been simplified and implemented on a Field Programmable Gate Array (FPGA), taking advantage of the inherent parallelism exhibited by the LGMD, and tested on real-time video streams. Experimental results demonstrate the effectiveness as a fast motion detector

    A Hybrid Visual-Model Based Robot Control Strategy for Micro Ground Robots

    Get PDF
    This paper proposed a hybrid vision-based robot control strategy for micro ground robots by mediating two vision models from mixed categories: a bio-inspired collision avoidance model and a segmentation based target following model. The implemented model coordination strategy is described as a probabilistic model using ïŹnite state machine (FSM) that allows the robot to switch behaviours adapting to the acquired visual information. Experiments demonstrated the stability and convergence of the embedded hybrid system by real robots, including the studying of collective behaviour by a swarm of such robots with environment mediation. This research enables micro robots to run visual models with more complexity. Moreover, it showed the possibility to realize aggregation behaviour on micro robots by utilizing vision as the only sensing modality from non-omnidirectional cameras

    A Visual Neural Network for Robust Collision Perception in Vehicle Driving Scenarios

    Get PDF
    This research addresses the challenging problem of visual collision detection in very complex and dynamic real physical scenes, specifically, the vehicle driving scenarios. This research takes inspiration from a large-field looming sensitive neuron, i.e., the lobula giant movement detector (LGMD) in the locust's visual pathways, which represents high spike frequency to rapid approaching objects. Building upon our previous models, in this paper we propose a novel inhibition mechanism that is capable of adapting to different levels of background complexity. This adaptive mechanism works effectively to mediate the local inhibition strength and tune the temporal latency of local excitation reaching the LGMD neuron. As a result, the proposed model is effective to extract colliding cues from complex dynamic visual scenes. We tested the proposed method using a range of stimuli including simulated movements in grating backgrounds and shifting of a natural panoramic scene, as well as vehicle crash video sequences. The experimental results demonstrate the proposed method is feasible for fast collision perception in real-world situations with potential applications in future autonomous vehicles

    User-Centered Virtual Reality for Promoting Relaxation: An Innovative Approach

    Get PDF
    [EN] Virtual reality has been used effectively to promote relaxation and reduce stress. It is possible to find two main approaches to achieve such aims across the literature. The first one is focused on genetic environments filled with relaxing "narratives" to induce control over one's own body and physiological response, while the second one engages the user in virtual reality-mediated activities to empower his/her own abilities to regulate emotion. The scope of the present contribution is to extend the discourse on VR use to promote relaxation, by proposing a third approach. This would be based on VR with personalized content, based on user research to identify important life events. As a second step, distinctive features of such events may be rendered with symbols, activities or other virtual environments contents. According to literature, it is possible that such an approach would obtain more sophisticated and long-lasting relaxation in users. The present contribution explores this innovative theoretical proposal and its potential applications within future research and interventionsPizzoli, SFM.; Mazzocco, K.; Triberti, S.; Monzani, D.; Alcañiz Raya, ML.; Pravettoni, G. (2019). User-Centered Virtual Reality for Promoting Relaxation: An Innovative Approach. Frontiers in Psychology. 10:1-8. https://doi.org/10.3389/fpsyg.2019.00479S1810Alcañiz, M., Botella, C., Baños, R. M., Zaragoza, I., & Guixeres, J. (2009). The Intelligent e-Therapy system: a new paradigm for telepsychology and cybertherapy. British Journal of Guidance & Counselling, 37(3), 287-296. doi:10.1080/03069880902957015Alcañiz, M., Botella, C., Rey, B., Baños, R., Lozano, J. A., de la Vega, N. L., 
 Hospitaler, A. (2007). EMMA: An Adaptive Display for Virtual Therapy. Lecture Notes in Computer Science, 258-265. doi:10.1007/978-3-540-73216-7_29Anderson, A. P., Mayer, M. D., Fellows, A. M., Cowan, D. R., Hegel, M. T., & Buckey, J. C. (2017). Relaxation with Immersive Natural Scenes Presented Using Virtual Reality. Aerospace Medicine and Human Performance, 88(6), 520-526. doi:10.3357/amhp.4747.2017Annemans, L., Redekop, K., & Payne, K. (2013). Current Methodological Issues in the Economic Assessment of Personalized Medicine. Value in Health, 16(6), S20-S26. doi:10.1016/j.jval.2013.06.008Annerstedt, M., Jönsson, P., WallergĂ„rd, M., Johansson, G., Karlson, B., Grahn, P., 
 WĂ€hrborg, P. (2013). Inducing physiological stress recovery with sounds of nature in a virtual reality forest — Results from a pilot study. Physiology & Behavior, 118, 240-250. doi:10.1016/j.physbeh.2013.05.023Baños, R. M., Botella, C., Alcañiz, M., Liaño, V., Guerrero, B., & Rey, B. (2004). Immersion and Emotion: Their Impact on the Sense of Presence. CyberPsychology & Behavior, 7(6), 734-741. doi:10.1089/cpb.2004.7.734Hoffman, H. G., Patterson, D. R., Soltani, M., Teeley, A., Miller, W., & Sharar, S. R. (2009). Virtual Reality Pain Control during Physical Therapy Range of Motion Exercises for a Patient with Multiple Blunt Force Trauma Injuries. CyberPsychology & Behavior, 12(1), 47-49. doi:10.1089/cpb.2008.0056Baños, R. M., Botella, C., Guillen, V., GarcĂ­a-Palacios, A., Quero, S., BretĂłn-LĂłpez, J., & Alcañiz, M. (2009). An adaptive display to treat stress-related disorders: EMMA’s World. British Journal of Guidance & Counselling, 37(3), 347-356. doi:10.1080/03069880902957064Baños, R. M., Botella, C., RubiĂł, I., Quero, S., GarcĂ­a-Palacios, A., & Alcañiz, M. (2008). Presence and Emotions in Virtual Environments: The Influence of Stereoscopy. CyberPsychology & Behavior, 11(1), 1-8. doi:10.1089/cpb.2007.9936Baños, R. M., Guillen, V., Quero, S., GarcĂ­a-Palacios, A., Alcaniz, M., & Botella, C. (2011). A virtual reality system for the treatment of stress-related disorders: A preliminary analysis of efficacy compared to a standard cognitive behavioral program. International Journal of Human-Computer Studies, 69(9), 602-613. doi:10.1016/j.ijhcs.2011.06.002Bermudez i Badia, S., Quintero, L. V., Cameirao, M. S., Chirico, A., Triberti, S., Cipresso, P., & Gaggioli, A. (2019). Toward Emotionally Adaptive Virtual Reality for Mental Health Applications. IEEE Journal of Biomedical and Health Informatics, 23(5), 1877-1887. doi:10.1109/jbhi.2018.2878846Borkovec, T. D., & Costello, E. (1993). Efficacy of applied relaxation and cognitive-behavioral therapy in the treatment of generalized anxiety disorder. Journal of Consulting and Clinical Psychology, 61(4), 611-619. doi:10.1037/0022-006x.61.4.611Bosse, T., Gerritsen, C., de Man, J., & Treur, J. (2014). Towards virtual training of emotion regulation. Brain Informatics, 1(1-4), 27-37. doi:10.1007/s40708-014-0004-9Brewer, W. F. (1996). What is recollective memory? Remembering our Past, 19-66. doi:10.1017/cbo9780511527913.002Cohn, M. A., Fredrickson, B. L., Brown, S. L., Mikels, J. A., & Conway, A. M. (2009). Happiness unpacked: Positive emotions increase life satisfaction by building resilience. Emotion, 9(3), 361-368. doi:10.1037/a0015952Fairbanks, R. J., & Wears, R. L. (2008). Hazards With Medical Devices: The Role of Design. Annals of Emergency Medicine, 52(5), 519-521. doi:10.1016/j.annemergmed.2008.07.008Felix, M. M. dos S., Ferreira, M. B. G., da Cruz, L. F., & Barbosa, M. H. (2019). Relaxation Therapy with Guided Imagery for Postoperative Pain Management: An Integrative Review. Pain Management Nursing, 20(1), 3-9. doi:10.1016/j.pmn.2017.10.014Felnhofer, A., Kothgassner, O. D., Schmidt, M., Heinzle, A.-K., Beutl, L., Hlavacs, H., & Kryspin-Exner, I. (2015). Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. International Journal of Human-Computer Studies, 82, 48-56. doi:10.1016/j.ijhcs.2015.05.004Ferrer-GarcĂ­a, M., & GutiĂ©rrez-Maldonado, J. (2012). The use of virtual reality in the study, assessment, and treatment of body image in eating disorders and nonclinical samples: A review of the literature. Body Image, 9(1), 1-11. doi:10.1016/j.bodyim.2011.10.001Ferrer-Garcia, M., GutiĂ©rrez-Maldonado, J., & Riva, G. (2013). Virtual Reality Based Treatments in Eating Disorders and Obesity: A Review. Journal of Contemporary Psychotherapy, 43(4), 207-221. doi:10.1007/s10879-013-9240-1Fisher, J. D. (1974). Situation-specific variables as determinants of perceived environmental aesthetic quality and perceived crowdedness. Journal of Research in Personality, 8(2), 177-188. doi:10.1016/0092-6566(74)90019-1Folkman, S., & Moskowitz, J. T. (2000). Positive affect and the other side of coping. American Psychologist, 55(6), 647-654. doi:10.1037/0003-066x.55.6.647Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56(3), 218-226. doi:10.1037/0003-066x.56.3.218Gilardi, S., Guglielmetti, C., & Pravettoni, G. (2013). Interprofessional team dynamics and information flow management in emergency departments. Journal of Advanced Nursing, 70(6), 1299-1309. doi:10.1111/jan.12284Gonçalves, R., Pedrozo, A. L., Coutinho, E. S. F., Figueira, I., & Ventura, P. (2012). Efficacy of Virtual Reality Exposure Therapy in the Treatment of PTSD: A Systematic Review. PLoS ONE, 7(12), e48469. doi:10.1371/journal.pone.0048469Gross, J. J. (1998). The Emerging Field of Emotion Regulation: An Integrative Review. Review of General Psychology, 2(3), 271-299. doi:10.1037/1089-2680.2.3.271Hemenover, S. H., & Bowman, N. D. (2018). Video games, emotion, and emotion regulation: expanding the scope. Annals of the International Communication Association, 42(2), 125-143. doi:10.1080/23808985.2018.1442239Hoffman, H. G., Chambers, G. T., Meyer, W. J., Arceneaux, L. L., Russell, W. J., Seibel, E. J., 
 Patterson, D. R. (2011). Virtual Reality as an Adjunctive Non-pharmacologic Analgesic for Acute Burn Pain During Medical Procedures. Annals of Behavioral Medicine, 41(2), 183-191. doi:10.1007/s12160-010-9248-7Holland, A. C., & Kensinger, E. A. (2010). Emotion and autobiographical memory. Physics of Life Reviews, 7(1), 88-131. doi:10.1016/j.plrev.2010.01.006Ip, H. H. S., Wong, S. W. L., Chan, D. F. Y., Byrne, J., Li, C., Yuan, V. S. N., 
 Wong, J. Y. W. (2018). Enhance emotional and social adaptation skills for children with autism spectrum disorder: A virtual reality enabled approach. Computers & Education, 117, 1-15. doi:10.1016/j.compedu.2017.09.010Korpela, K. M., YlĂ©n, M., TyrvĂ€inen, L., & Silvennoinen, H. (2008). Determinants of restorative experiences in everyday favorite places. Health & Place, 14(4), 636-652. doi:10.1016/j.healthplace.2007.10.008Korpela, K. M., & YlĂ©n, M. P. (2009). Effectiveness of Favorite-Place Prescriptions. American Journal of Preventive Medicine, 36(5), 435-438. doi:10.1016/j.amepre.2009.01.022Kyle, G., Graefe, A., Manning, R., & Bacon, J. (2004). Effects of place attachment on users’ perceptions of social and environmental conditions in a natural setting. Journal of Environmental Psychology, 24(2), 213-225. doi:10.1016/j.jenvp.2003.12.006Lang, P. J. (s. f.). Fear reduction and fear behavior: Problems in treating a construct. Research in psychotherapy., 90-102. doi:10.1037/10546-004LeĂłn-Pizarro, C., Gich, I., Barthe, E., Rovirosa, A., FarrĂșs, B., Casas, F., 
 Arcusa, A. (2007). A randomized trial of the effect of training in relaxation and guided imagery techniques in improving psychological and quality-of-life indices for gynecologic and breast brachytherapy patients. Psycho-Oncology, 16(11), 971-979. doi:10.1002/pon.1171Lobel, A., Granic, I., & Engels, R. C. M. E. (2014). Stressful Gaming, Interoceptive Awareness, and Emotion Regulation Tendencies: A Novel Approach. Cyberpsychology, Behavior, and Social Networking, 17(4), 222-227. doi:10.1089/cyber.2013.0296Maples-Keller, J. L., Bunnell, B. E., Kim, S.-J., & Rothbaum, B. O. (2017). The Use of Virtual Reality Technology in the Treatment of Anxiety and Other Psychiatric Disorders. Harvard Review of Psychiatry, 25(3), 103-113. doi:10.1097/hrp.0000000000000138Maples-Keller, J. L., Yasinski, C., Manjin, N., & Rothbaum, B. O. (2017). Virtual Reality-Enhanced Extinction of Phobias and Post-Traumatic Stress. Neurotherapeutics, 14(3), 554-563. doi:10.1007/s13311-017-0534-yMarĂ­n-Morales, J., Higuera-Trujillo, J. L., Greco, A., Guixeres, J., Llinares, C., Scilingo, E. P., 
 Valenza, G. (2018). Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors. Scientific Reports, 8(1). doi:10.1038/s41598-018-32063-4Marks, I. M., & Gelder, M. G. (1965). A Controlled Retrospective Study of Behaviour Therapy in Phobic Patients. British Journal of Psychiatry, 111(476), 561-573. doi:10.1192/bjp.111.476.561Miller, K. M. (1987). Deep Breathing Relaxation. AORN Journal, 45(2), 484-488. doi:10.1016/s0001-2092(07)68361-6Mitroff, S. R., Biggs, A. T., Adamo, S. H., Dowd, E. W., Winkle, J., & Clark, K. (2015). What can 1 billion trials tell us about visual search? Journal of Experimental Psychology: Human Perception and Performance, 41(1), 1-5. doi:10.1037/xhp0000012MĂŒhlberger, A., Herrmann, M. J., Wiedemann, G., Ellgring, H., & Pauli, P. (2001). Repeated exposure of flight phobics to flights in virtual reality. Behaviour Research and Therapy, 39(9), 1033-1050. doi:10.1016/s0005-7967(00)00076-0Oliver, M. B., Bowman, N. D., Woolley, J. K., Rogers, R., Sherrick, B. I., & Chung, M.-Y. (2016). Video games as meaningful entertainment experiences. Psychology of Popular Media Culture, 5(4), 390-405. doi:10.1037/ppm0000066Oliver, M. B., Hartmann, T., & Woolley, J. K. (2012). Elevation in Response to Entertainment Portrayals of Moral Virtue. Human Communication Research, 38(3), 360-378. doi:10.1111/j.1468-2958.2012.01427.xParsons, T. D., & Reinebold, J. L. (2012). Adaptive virtual environments for neuropsychological assessment in serious games. IEEE Transactions on Consumer Electronics, 58(2), 197-204. doi:10.1109/tce.2012.6227413Parsons, T. D., & Rizzo, A. A. (2008). Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: A meta-analysis. Journal of Behavior Therapy and Experimental Psychiatry, 39(3), 250-261. doi:10.1016/j.jbtep.2007.07.007Parsons, T. D., Rizzo, A. A., Rogers, S., & York, P. (2009). Virtual reality in paediatric rehabilitation: A review. Developmental Neurorehabilitation, 12(4), 224-238. doi:10.1080/17518420902991719Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), 1175-1191. doi:10.1109/34.954607Pressman, S. D., & Cohen, S. (2005). Does positive affect influence health? Psychological Bulletin, 131(6), 925-971. doi:10.1037/0033-2909.131.6.925Renzi, C., Riva, S., Masiero, M., & Pravettoni, G. (2016). The choice dilemma in chronic hematological conditions: Why choosing is not only a medical issue? A psycho-cognitive perspective. Critical Reviews in Oncology/Hematology, 99, 134-140. doi:10.1016/j.critrevonc.2015.12.010Riva, G., Mantovani, F., Capideville, C. S., Preziosa, A., Morganti, F., Villani, D., 
 Alcañiz, M. (2007). Affective Interactions Using Virtual Reality: The Link between Presence and Emotions. CyberPsychology & Behavior, 10(1), 45-56. doi:10.1089/cpb.2006.9993Rizzo, A., Parsons, T. D., Lange, B., Kenny, P., Buckwalter, J. G., Rothbaum, B., 
 Reger, G. (2011). Virtual Reality Goes to War: A Brief Review of the Future of Military Behavioral Healthcare. Journal of Clinical Psychology in Medical Settings, 18(2), 176-187. doi:10.1007/s10880-011-9247-2RodrĂ­guez, A., Rey, B., Clemente, M., Wrzesien, M., & Alcañiz, M. (2015). Assessing brain activations associated with emotional regulation during virtual reality mood induction procedures. Expert Systems with Applications, 42(3), 1699-1709. doi:10.1016/j.eswa.2014.10.006Rodriguez, A., Rey, B., Vara, M. D., Wrzesien, M., Alcaniz, M., Banos, R. M., & Perez-Lopez, D. (2015). A VR-Based Serious Game for Studying Emotional Regulation in Adolescents. IEEE Computer Graphics and Applications, 35(1), 65-73. doi:10.1109/mcg.2015.8Rubin, D. C. (2005). A Basic-Systems Approach to Autobiographical Memory. Current Directions in Psychological Science, 14(2), 79-83. doi:10.1111/j.0963-7214.2005.00339.xRubin, D. C., & Kozin, M. (1984). Vivid memories. Cognition, 16(1), 81-95. doi:10.1016/0010-0277(84)90037-4Saadatmand, V., Rejeh, N., Heravi-Karimooi, M., Tadrisi, S. D., Zayeri, F., Vaismoradi, M., & Jasper, M. (2013). Effect of nature-based sounds’ intervention on agitation, anxiety, and stress in patients under mechanical ventilator support: A randomised controlled trial. International Journal of Nursing Studies, 50(7), 895-904. doi:10.1016/j.ijnurstu.2012.11.018Serino, S., Triberti, S., Villani, D., Cipresso, P., Gaggioli, A., & Riva, G. (2013). Toward a validation of cyber-interventions for stress disorders based on stress inoculation training: a systematic review. Virtual Reality, 18(1), 73-87. doi:10.1007/s10055-013-0237-6Triberti, S., & Barello, S. (2016). The quest for engaging AmI: Patient engagement and experience design tools to promote effective assisted living. Journal of Biomedical Informatics, 63, 150-156. doi:10.1016/j.jbi.2016.08.010Tugade, M. M., Fredrickson, B. L., & Feldman Barrett, L. (2004). Psychological Resilience and Positive Emotional Granularity: Examining the Benefits of Positive Emotions on Coping and Health. Journal of Personality, 72(6), 1161-1190. doi:10.1111/j.1467-6494.2004.00294.xTulving, E. (1985). Memory and consciousness. Canadian Psychology/Psychologie canadienne, 26(1), 1-12. doi:10.1037/h0080017Tusek, D. L., & Cwynar, R. E. (2000). Strategies for Implementing a Guided Imagery Program to Enhance Patient Experience. AACN Clinical Issues: Advanced Practice in Acute & Critical Care, 11(1), 68-76. doi:10.1097/00044067-200002000-00009Vara, M. D., Baños, R. M., Rasal, P., RodrĂ­guez, A., Rey, B., Wrzesien, M., & Alcañiz, M. (2016). A game for emotional regulation in adolescents: The (body) interface device matters. Computers in Human Behavior, 57, 267-273. doi:10.1016/j.chb.2015.12.033Vempati, R. P., & Telles, S. (2002). Yoga-Based Guided Relaxation Reduces Sympathetic Activity Judged from Baseline Levels. Psychological Reports, 90(2), 487-494. doi:10.2466/pr0.2002.90.2.487Villani, D., Carissoli, C., Triberti, S., Marchetti, A., Gilli, G., & Riva, G. (2018). Videogames for Emotion Regulation: A Systematic Review. Games for Health Journal, 7(2), 85-99. doi:10.1089/g4h.2017.0108Villani, D., Riva, F., & Riva, G. (2007). New technologies for relaxation: The role of presence. International Journal of Stress Management, 14(3), 260-274. doi:10.1037/1072-5245.14.3.260Villani, D., Rotasperti, C., Cipresso, P., Triberti, S., Carissoli, C., & Riva, G. (2016). Assessing the Emotional State of Job Applicants Through a Virtual Reality Simulation: A Psycho-Physiological Study. eHealth 360°, 119-126. doi:10.1007/978-3-319-49655-9_16Witvliet, C. van O., Ludwig, T. E., & Laan, K. L. V. (2001). Granting Forgiveness or Harboring Grudges: Implications for Emotion, Physiology, and Health. Psychological Science, 12(2), 117-123. doi:10.1111/1467-9280.00320Wright, D., & Gaskell, G. (1992). The Construction and Function of Vivid Memories. Theoretical Perspectives on Autobiographical Memory, 275-292. doi:10.1007/978-94-015-7967-4_16Wrzesien, M., RodrĂ­guez, A., Rey, B., Alcañiz, M., Baños, R. M., & Vara, M. D. (2015). How the physical similarity of avatars can influence the learning of emotion regulation strategies in teenagers. Computers in Human Behavior, 43, 101-111. doi:10.1016/j.chb.2014.09.02

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    The role of neural synchrony and rate in high-dimensional input systems. The Antennal Lobe: a case study

    No full text
    International audienceDealing with high-throughput information systems is becoming an everyday problem in many fields of science, as technological advances improve our ability to gather data. In particular, the information encoding problem in highdimensional spaces is a crucial aspect to consider. In fact, biological systems are known to be very efficient at encoding and processing high-dimensional information. Here we propose a biologically-based solution that mimics the neural processing performed by the Antennal Lobe of insects. Based on our understanding of this system, our model exploits plausible neural mechanisms to transform the massive and high-dimensional spatial and temporal input of the olfactory receptor neurons into a neural population encoding based on synchrony and frequency, consistent with known physiology. We demonstrate the capabilities of our Antennal Lobe model in the context of a classification task of different olfactory stimuli of varying concentrations. We show that the generated neural representation conveys both the identity and the concentration of each stimuli

    Downloaded from

    No full text
    A fly-locust based neuronal control system applied to an unmanned aerial vehicle: the invertebrate neuronal principles for course stabilization, altitude control and collision avoidanc
    corecore