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Abstract. This paper proposed a hybrid vision-based robot control
strategy for micro ground robots by mediating two vision models
from mixed categories: a bio-inspired collision avoidance model and a
segmentation based target following model. The implemented model
coordination strategy is described as a probabilistic model using finite
state machine (FSM) that allows the robot to switch behaviours adapting
to the acquired visual information. Experiments demonstrated the
stability and convergence of the embedded hybrid system by real robots,
including the studying of collective behaviour by a swarm of such robots
with environment mediation. This research enables micro robots to run
visual models with more complexity. Moreover, it showed the possibility
to realize aggregation behaviour on micro robots by utilizing vision as
the only sensing modality from non-omnidirectional cameras.

Keywords: micro robot, visual model, bio-inspired, collision avoidance,
image processing

1 Introduction

Bio-plausible visual models inspired from insects are getting importance in
robotics for various of visual-motor tasks, such as the trajectory stabilization
and navigation task inspired by Elementary Motion Detector (EMD) [1], collision
avoidance (CA) inspired by Lobular Giant Movement Detector (LGMD) [2, 3],
homing task inspired by the mushroombody of ants [4] and also navigation in
spired by Small Target Motion Detectors (STMD) [5], by taking advantage of
their reliability in coping with rapid changing scenarios with only minimum
amount of neurons occupied. Comparing to conventional reactive navigation
algorithms based on computer vision techniques such as standard optic flow [6],
these bio-inspired models are usually free from massive calculation such as
object recognition or distance estimation. Benefiting from the simplicity and
efficiency, they are especially feasible for micro robots that often have only
limited computational power on-board [7, 8].

Take collision avoidance as one example, the neural structure LGMD which
located in the locust’s optic lobe is believed to be responsible for detecting
looming objects and triggering escaping maneuver [9]. For decades, it has
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inspired researchers to implement the neural network into computational models
for autonomous vehicles. The computational model of LGMD such as the
Embedded-LGMD (ELGMD) [8] has been proved to be reliable in dealing with
collision situations in dynamic scenarios. By producing neural spikes only when
the imminent collision is rapid and close enough, the LGMD is well-recognized
by its high non-linearity [10] and directional selectivity, which is different from
other bio-inspired visual models [1, 11].

As a result, it will be interesting to investigate the possibility and
performance of utilizing both LGMD-based collision avoidance model and visual
navigation models to perform more complex tasks. Since they usually hold
contradictory purposes, when both collision avoidance and visual navigation
models are utilized, their feature have to be carefully mediated to avoid
conflicting motion commands. Among various of approaches at higher level to
integrate these visual models, such as feedback linearisation [12], fuzzy logic [13]
and finite state machine (FSM) [14], the FSM is one of the most favoured
approach on micro robot platforms due to its predictability responding to inputs
without altering the performance of sub-models.

This paper proposed an approach of realizing a hybrid visual-motor control
strategy for micro robots, allowing them to accomplish multiple tasks with
certain goal. The proposed strategy which can be described as probabilistic
model using FSM is composed of visual models from two different categories: the
ELGMD model and a visual navigation approach based on image segmentation
to imitate the target following behaviour. The stability and convergence of this
robot control strategy is demonstrated by a series of experiments, including
aggregation behaviour from a swarm of low-cost micro ground robots named
Colias IV. To the best of the authors knowledge, it is the first attempt of utilizing
a common camera as the only sensor, and processing image information to
implement aggregation behaviour without communication on real micro robots.

The rest of this paper are organized as follows: section 2 describes the
proposed algorithms implemented in individual robots; section 3 illustrates a
series of experiments to test the performance of proposed robot system and the
swarm scenario; we conclude this research in section 4.

2 Models and Methods

2.1 The Bio-inspired Collision Detection Model

Avoiding collisions is always crucial for autonomous robots. In this study,
the ELGMD is deployed to serve CA purpose. As demonstrated in previous
studies [8, 15], even this feature alone, an individual robot is able to establish
autonomous motion inside a constrained arena.

The ELGMD is a layered neural model formed by five layers with lateral
inhibition mechanism and two single cells. The computational model contains
only low-level image processing such as excitation transferring and neighbouring
operations. The ELGMD model predicts an imminent collision by abstracting
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Fig. 1: The illustration of the implemented computation model ELGMD for CA. (a)
The ELGMD model’s architecture. The input of the P layer are the luminance change.
Inhibitions (The I layer and the FFI cell) are indicated with dotted lines and have one
frame delay. Excitations are indicated with solid lines which have no delay. (b) Example
of ELGMD process. The output of S layer filters out the stationary background, and the
output of G layer enhances the edges of moving foreground; (c) Intracellular recordings
from the LGMD of a real locust viewing an approaching object (figure adapted from [9]
with permission). (d) Output of ELGMD tested with a similar configuration comparing
to (c), showing the increasing LGMD activity before collision.

Table 1: Robot Control Strategy Definition by ELGMD model

Neuron Status
Decision Action

CLGMD
f CFFI

f

0 0 No collision Wander (60 mm/s)
1 0 Collision Turn (180± 60°)

X(any) 1 Sudden Change Stop for a while (0.3 s)

the visual motion information, i.e. the fast expanding profile of approaching
objects into the activity level of LGMD cell, which is further transformed into
neural spikes according to a fixed threshold. Confirmation of impending collision
is generated by successive LGMD spikes. In some circumstances such as self
turning, false spikes caused by sudden motion in vision could be suppressed
by the feed-forward inhibition cell (FFI), which is also an activity from visual
motion. The explanation of ELGMD and its performance are illustrated in
figure 1. In the Colias IV robot, the process of ELGMD takes the full size
(99x72) of captured image into calculation. For the robot’s motion settings,
since the speed characteristics is not the primary goal to study in this paper,
the motion speed is not set to the maximum, but to the power-efficient range.

In consistency with ELGMD models utilized in autonomous CA experiments,
the parameters and controlling logic are kept as previously chosen [8]. The robot’s
motion is controlled according to the status of ELGMD model, determined by
both of the LGMD and FFI cells’ activity, which are listed in table 1. When no
collision is detected, the robot is allowed to wander forward without constraints.
To keep the system as simple as possible, the collision avoiding behaviour is
defined by a in-position turning to another direction, which is almost an U-
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Fig. 2: Illustration of the target detection and following model. (a) The target
detection, showing with the target robot staying 9 cm away. The red circle indicates
the points belongs to the target, while the colour intensity is represented by the size of
circle; (b) The robot’s linear motion speed control behaviour. (c) The robot’s rotation
motion control by both target volume and centroid bias. In (b) and (c), when target
volume is less than 5, the model is inactive which is overtaken by the CA model.

turn with randomly generated margin (180±60°) to prevent deadlocking in case
trapped in the corner or several obstacles. When a large object is translating in
front of the robot that producing spikes to the FFI cell, the robot will stop for
a while until safe.

2.2 Vision cue-based Target Following Model

Another elementary part of this hybrid vision model is to track and follow an
object, either a partner robot, or an anchor position, so that multiple robots
could gather together and form an accumulating group. As one example of simple
conventional visual model, it contains two parts: a light-weight visual target
detection algorithm to identify the object, and a robot navigation method to
follow the object continuously. Example of this process is shown in figure 2.

Visual target detection: The visual target detection algorithm is mainly based
on the target’s colour property. In this colour segmentation approach, we have
chosen red as the only interested colour since it has the highest saturation
response, which could be observed by the robot from far away.

Respecting to the robot platform’s computational power, the algorithm is
kept as simple as possible. The input image I used for this model has been
down-sampled to 18x15 pixels to balance the image quality and the CPU&RAM
occupation. The colour space is transformed into hue-saturation-value (HSV) [16]
from it’s original YUV format, thus majority of required chromatic cue is
represented by the hue value. In HSV colour space, each pixel I (i,j) in the image
I is represented by the values in three channels:

I (i, j) = [I h(i, j), I s(i, j), I v(i, j)]′ (1)
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At first, the down-sampling image is passes through a hue-saturation mask
to match certain conditions. To prevent the hue adrift problem and to increase
the robustness against different illumination conditions, suspicious pixels that
belongs to the target are checked by the hue range and minimum saturation:

M red(i, j) =

{
true if (−10° ≤ I h(i,j) ≤ −10°)

⋂
(I s(i,j) ≥ 0.3)

false otherwise
(2)

where M red(i, j) is the suspicious region. The fixed thresholds are chosen
empirically. Followed by this, all suspicious regions are joined and analysed by 4-
connection to find the correct target region. Only the largest region Rr is treated
the correct target area, excluding the others. Once a red object is identified by
above procedures, two metrics are measured for the motion generation procedure:
1) the identified target’s colour volume Dobj (or the “mass” of target region),
which is the zero-order moment of target region’s value channel:

Dobj = µRr

(0,0) =
∑

i,j∈Rr

I v(i, j) (3)

and 2) the bias Bobj of the object’s centroid against the image centre, which is
the normalized horizontal first-order moment:

Bobj =
µRr

(1,0)

µRr

(0,0)

=

∑
i,j∈Rr

I v(i, j) · (j − jmax

2 )∑
i,j∈Rr

I v(i, j) · jmax
(4)

in which j is the horizontal index of a pixel, and jmax is the width of the image.

Motion control: The goal of motion control is to drive a robot towards the target
to a region, where the target is in front of the follower with a certain distance.
Specifically, this behaviour contains three phases:

P1: If the target emerges from far away, the robot accelerates to charge
towards it, until the projected image has reached a certain size then becomes
phase 3. The motion speed decrease exponentially during approach,

P2: If the target appears suddenly or becomes too close that contributes to a
large region of image, which could happen when the target is moving, the robot
retracts to leave enough space to enter P3.

P3: A safe zone is set when the size of target is satisfactory, then the robot
enters the wait state. During this period, the robot only tunes its orientation
slightly towards the centre of object but no displacement is made.

These phases can be described as functions of two group of variables: the
robot’s linear speed v and rotation speed ω controlled by the calculated metrics
from image processing Dobj and Bobj , as illustrated in figure 2(b) and 2(c).

Notice that, by utilizing this visual navigation model alone, the initial catch
up speed have to be greater than the target object, which could be another
robot, in order to make this system converge [12].

2.3 The Hybrid Robot Control Strategy

The hybrid robot control strategy is based on the probabilistic approach: the
finite state machine (FSM), since for such two visual models that generate
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Fig. 3: The proposed finite state machine to incorporate the two visual models. (a)
The illustration of proposed FSM, whose initial state is the wander state. (b) The
illustration of a typical scenario controlled by this hybrid visual system.

conflicting behaviours, actions from only one model can be taken by the robot
at a time according to its current situation, in order to ensure stability and
consistency. In total, there are four behaviours generated by two models that
need to be controlled, which are the wander / turn generated by the ELGMD
model, and the follow / wait generated by the target following model. The
structure and an example of robot behaviour are depicted in figure 3.

In this FSM logic, the wander state is set to be the initial and default state,
while the other states are restricted with conditions. In this way, suppose a robot
inside an arena surrounded by walls, it would perform such a behaviour:

1. The robot wanders within the arena to establish autonomous navigation
as long as possible, by trying to avoid collisions against walls or any other
unidentified object by accepting motion commands from the ELGMD model.

2. When a target object is encountered, the robot enters the follow state
to maintain certain distance behind. If the target object is stationary, the
follower stops in the wait state. A timer is set once the motion commands
from the target following model is activated. The activity last for a certain
time tw before it rotates to another direction, in order to return to the
wander state to continue exploring the arena.

2.4 The Robot Platform and Experiment Arena Configuration

In this research, the micro robot platform Colias IV is utilized [17]. Colias IV
is a micro ground robot occupying a circular footprint bearing the diameter
of 4 cm. The motion is provided by two differential driven wheels.The Colias
IV is equipped with a strong ARM-Cortex M4 micro-controller running at
180MHz with embedded SRAM of 256 Kbytes, which ensures the required
computation power for both proposed image processing tasks. The images used
in the visual tasks are captured continuously by a tiny CMOS camera on-board
with resolution configured at 99x72, 30 frames per second. With regarding to the
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frame rate, the system is working in real-time mode that each process has certain
time allowance. In the total frame duration of 33 ms, the ELGMD need 7±2 ms
to process, the target finding model occupies 11 ± 1 ms, and the rest process
use up to 1 ms. The robot in the experiments are coated with a 3D-printed red
shell, in order to be distinguishable by the target following model, as shown in
figure 4(a).

The experiments are conducted in an arena sizing 175x155 cm, surrounded by
wall of 15 cm high and decorated by wall papers with black& white patterns. The
floor of the arena is covered by black tiles. There are two types of illumination
cast into this arena to separate two zones by brightness levels. The bright zone
is irradiated by four LED spot lights above the arena, while the dark zone is
lighted by ambient lamps of the whole room. Both light temperature has been
tuned to 4000K for consistency. Equipped with SORAA SNAP systems, the
light beams produced by the LED have straight and sharp edges, leaving the
transition border with thickness of almost 5cm. Two red cue balls with diameter
of φ =48 cm are fixed in the arena, serving as static stimuli. One cue ball is
placed in centre of the bright zone and the other one in the dark zone.

Robots behaviour were recorded by overhead camera. Their trajectories are
tracked and analysis by whycon system [18] by utilizing the circle markers on
top of the robot [19], as shown in figure 4.

3 Experiments and Results

3.1 Individual Robot Performance Tests

The performance of hybrid visual model on the individual robot is tested
accordingly. All tests in this subsection is done in the bright zone. Results of
the data was illustrated in figure 5.

First, the stability of proposed visual models are tested by challenging the
robot with static stimuli, as illustrated in figure 5a.The following metrics are
analysed and each scenario is repeated for 50 times:

1. the success rate of collision detection and avoidance ηc;
2. the Distance to Collision (DTC) of the ELGMD model for both the wall

obstacle dwall
tc and a green ball dballtc for comparison, which is the distance

between the robot and the obstacle when it turns away;
3. the ratio of switching models in a competitive scenario Pt, which is defined

by: when two objects are placed in front of the robot, the ratio of switching
from wander to follow and from wander to turn ;

4. the distance where the robot stops in front of a red object datt(1), or two
objects datt(2).

Results of these tests are concluded in table 2. The results have demonstrated
that the visual models work stable to realize their own goals. Moreover, it reveals
that, for the visual target following model, the sensitivity and range increases as
the target cluster expands, since a larger region of targets contributes to more
obvious visual cues to be identified from far away.
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Fig. 4: The robot platform and experiment arena configuration. (a) The Colias IV
robot deployed in this research. (b) The experiment arena set-up, showing the photo
of a cue ball and Colias IV covered by 3D printed shells.

dtc

Pt =n1/n2

n1

n2

datt (1)

datt (2)

(a)

wander turn wander follow wait

(b)

Fig. 5: The tests of hybrid model on individual robot. (a) Schematic of measuring the
metrics of the hybrid model. The results are shown in table 2; (b) One piece of the
variables of a running robot during an arena test. The robot’s trajectory is similar to
which of figure 3(b). The robot’s states are indicated at the bottom of plots.

Then, the variables of a robot deployed inside the arena are logged and
analysed to show the dynamics of the visual models. For a typical scenario where
the robot’s trajectory is similar to figure 3(b), the data are plotted in figure 5b.
The recorded results show that the ELGMD has evoked a turning action when
a collision is detected at around 4.5s. Then at 8.3s, a target object has been
identified thus attracts the robot to charge towards it. The orientation is tuned
continuously. Finally at 10.8s, the robot stops behind the object. The series of
states switching meet our expectations.

3.2 Robot Aggregation Tests

Since the robots can join and leave the cluster at any time, one typical approach
to study the stability of aggregation which is dynamically changing is to study
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Table 2: The Test Results of Individual Robot Behaviours

Name ηc dwall
tc dballtc Pt datt(1) datt(2)

Value 96% 41:9 8.3± 2.7 cm 6.1± 1.8 cm 14.1± 4.6 cm 21.6± 3.5 cm

(b)(a)

Fig. 6: (a)The tested exposure intensities under different illumination status; (b) The
curve to tune wait time tw by exposure intensity Ie.

the discriminative cluster size controlled by environment. By adjusting the time
that each robot remains in the cluster, i.e. the tw, it is obvious that the longer
time each robot stays inside a cluster, the larger size.

Being inspired by the aggregation behaviour found in honeybees and
cockroaches [20], we employ the ambient illumination as the controlling factor,
which is embodied by the camera’s exposure intensity Ie ∈ [0, 255], an integer
automatically adjusted in the camera by a build-in histogram-based algorithm.
Thus no additional sensors or communication methods are required. Its intention
is to maintain the brightness level of captured images. Therefore, the value is
tightly tuned by the view of the robot.

One test on the relationship between Ie and the robot’s vision is illustrated
in figure 6. The results showed that a worse illumination condition would be
compensated by a higher exposure intensity, and vice versa. By using this
mechanism, the Ie then tunes the robot’s tw by:

tw = 70 · tanh(5− Ie
10

) + 20 (5)

The Aggregation Experiments: The experiments are conducted with different
population sizes, given by 7, 11 and 15 robot agents respectively. Each
experiment last for 15 minutes. At the beginning the robots were placed
randomly inside. Aggregation number of both bright zone and dark zone were
recorded and logged. Since there is no complete stop condition for any robot, the
formation of groups are always fluctuating. This doesn’t interfere us to analyse
their properties by comparing the group sizes along time. For all three trials, we
investigated the largest cluster in both zones along time. Records and results of
the experiments are redrawn in figure 7.

Results: Result of the experiments show that robots tend to aggregate at darker
zones rather than bright zones regardless of group sizes. For each group size, the
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Fig. 7: The illustration of arena experiments results with multiple robots when the
largest clustered population has reached in either zones (see scales in figure 4b); (b)
The largest cluster population distributions in all experiment trials.

dark zone always restrain robots for longer thus there are higher chances for
more robots to meet and stop. On the other hand, the cluster in the bright
zone vanishes quickly due to the short tw. As a main factor that cause the
environment selective behaviour, this dynamic behaviour is one of the common
point in probabilistic aggregation. This behaviour is also found in the cockroaches
inspired robots [20,21], whose chance to join or leave a cluster is affected by both
the cluster size and environment darkness.

3.3 Discussion

Micro robots with strong vision ability have shown its potential in swarm
robotics, but the approaches are not always straightforward. Being different
from the utilization of conventional sensors such as sound, light or infra-red
sensors [22], information from images is highly sensitive to the relative motion
of target and viewing angle [23]. In earlier researches, some approaches use
additional information [23] such as infra-red sensors to identify surrounding
environment and prevent collisions, while some employ an omnidirectional
camera [12] to expand viewing angle.

Although the vision has shown its potential in acting as the primary sensor to
achieve multi-tasking [24], care should be taken at designing to get stable outputs
for before motion controlling. Since the robots can only detect objects only in
view, they cannot react to objects in other directions [5], thus aggregation is less
likely to trigger than those robots equipped with omnidirectional sensors [22].
The cue balls act as static stimulus in the arena. They provide stable signals
which help robots to gather around faster. As the population size gets larger,
there is a higher chance that two robots run in a face to face trajectory, which
causing a group without the help from cue balls.
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4 Conclusion

The paper has discussed an approach to mediate two visual tasks from different
categories and even with conflicting purposes in micro robots to serve multi-
purpose tasks. This hybrid visual coordination model is described by a FSM
that activates either model according to the robot’s situation thus no interference
is introduced to each other. The two visual models are a bio-inspired collision
detection neural model, and a colour-sensitive target following algorithm. Both
vision systems are computationally efficient and stable to be implementation on
a microprocessor. The proposed hybrid model is realized on the micro robots
named Colias IV to demonstrate the robustness.

Systematic experiments showed that the bio-inspired collision avoidance
model ELGMD can cooperate with other visual models to achieve multi-tasks.
The proposed hybrid visual model is feasible to be deployed in low-cost micro
robots especially for educational purposes, which enables the collective behaviour
study by micro robots utilizing normal camera as the only sensor.

In the future, study will be conducted on 1) to further investigate the
aggregation behaviour evoked by visual inputs in swarm scenarios; 2) to improve
the proposed target following models to achieve better precision and sensitivity.
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