432 research outputs found
Metal-insulator transition at B=0 in an ultra-low density () two dimensional GaAs/AlGaAs hole gas
We have observed a metal-insulator transition in an ultra-low density two
dimensional hole gas formed in a high quality GaAs-AlGaAs heterostructure at
B=0. At the highest carrier density studied () the hole gas is strongly metallic, with an exceptional mobility of
. The low disorder and strength of the many-body
interactions in this sample are highlighted by the observation of re-entrant
metal insulator transitions in both the fractional () and integer
() quantum Hall regimes. On reducing the carrier density the
temperature and electric field dependence of the resistivity show that the
sample is still metallic at (), becoming
insulating at . Our results indicate that
electron-electron interactions are dominant at these low densities, pointing to
the many body origins of this metal-insulator transition. We note that the
value of at the transition () is large enough to allow
the formation of a weakly pinned Wigner crystal, and is approaching the value
calculated for the condensation of a pure Wigner crystal.Comment: 4 pages, latex, 4 postscript figures, submitted to EP2DS-12 on 21st
August 1997, to appear in Physica
Dephasing time of disordered two-dimensional electron gas in modulated magnetic fields
The dephasing time of disordered two-dimensional electron gas in a modulated
magnetic field is studied. It is shown that in the weak inhomogeneity limit,
the dephasing rate is proportional to the field amplitude, while in strong
inhomogeneity limit the dependence is quadratic. It is demonstrated that the
origin of the dependence of dephasing time on field amplitude lies in the
nature of corresponding single-particle motion. A semiclassical Monte Carlo
algorithm is developed to study the dephasing time, which is of qualitative
nature but efficient in uncovering the dependence of dephasing time on field
amplitude for arbitrarily complicated magnetic-field modulation. Computer
simulations support analytical results. The crossover from linear to quadratic
dependence is then generalized to the situation with magnetic field modulated
periodically in one direction with zero mean, and it is argued that this
crossover can be expected for a large class of modulated magnetic fields.Comment: 8 pages, 2 figure
Transient elastohydrodynamic lubrication analysis of a novel metal-on-metal hip prosthesis with a non-spherical femoral bearing surface
Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry
Ferromagnetism and Canted Spin Phase in AlAs/GaMnAs Single Quantum Wells: Monte Carlo Simulation
The magnetic order resulting from a confinement-adapted
Ruderman-Kittel-Kasuya-Yosida indirect exchange between magnetic moments in the
metallic phase of a AlAs/Ga(1-x)Mn(x)As quantum well is studied by Monte Carlo
simulation. This coupling mechanism involves magnetic moments and carriers
(holes), both coming from the same Mn(2+) ions. It leads to a paramagnetic, a
ferromagnetic, or a canted spin phase, depending on the carrier concentration,
and on the magnetic layer width. It is shown that high transition temperatures
may be obtained.Comment: 7 figure
Weak Localization Effect in Superconductors by Radiation Damage
Large reductions of the superconducting transition temperature and
the accompanying loss of the thermal electrical resistivity (electron-phonon
interaction) due to radiation damage have been observed for several A15
compounds, Chevrel phase and Ternary superconductors, and in
the high fluence regime. We examine these behaviors based on the recent theory
of weak localization effect in superconductors. We find a good fitting to the
experimental data. In particular, weak localization correction to the
phonon-mediated interaction is derived from the density correlation function.
It is shown that weak localization has a strong influence on both the
phonon-mediated interaction and the electron-phonon interaction, which leads to
the universal correlation of and resistance ratio.Comment: 16 pages plus 3 figures, revtex, 76 references, For more information,
Plesse see http://www.fen.bilkent.edu.tr/~yjki
Weak Localization and Integer Quantum Hall Effect in a Periodic Potential
We consider magnetotransport in a disordered two-dimensional electron gas in
the presence of a periodic modulation in one direction. Existing quasiclassical
and quantum approaches to this problem account for Weiss oscillations in the
resistivity tensor at moderate magnetic fields, as well as a strong
modulation-induced modification of the Shubnikov-de Haas oscillations at higher
magnetic fields. They do not account, however, for the operation at even higher
magnetic fields of the integer quantum Hall effect, for which quantum
interference processes are responsible. We then introduce a field-theory
approach, based on a nonlinear sigma model, which encompasses naturally both
the quasiclassical and quantum-mechanical approaches, as well as providing a
consistent means of extending them to include quantum interference corrections.
A perturbative renormalization-group analysis of the field theory shows how
weak localization corrections to the conductivity tensor may be described by a
modification of the usual one-parameter scaling, such as to accommodate the
anisotropy of the bare conductivity tensor. We also show how the two-parameter
scaling, conjectured as a model for the quantum Hall effect in unmodulated
systems, may be generalized similarly for the modulated system. Within this
model we illustrate the operation of the quantum Hall effect in modulated
systems for parameters that are realistic for current experiments.Comment: 15 pages, 4 figures, ReVTeX; revised version with condensed
introduction; two figures taken out; reference adde
Collapsing shear-free perfect fluid spheres with heat flow
A global view is given upon the study of collapsing shear-free perfect fluid
spheres with heat flow. We apply a compact formalism, which simplifies the
isotropy condition and the condition for conformal flatness. This formalism
also presents the simplest possible version of the main junction condition,
demonstrated explicitly for conformally flat and geodesic solutions. It gives
the right functions to disentangle this condition into well known differential
equations like those of Abel, Riccati, Bernoulli and the linear one. It yields
an alternative derivation of the general solution with functionally dependent
metric components. We bring together the results for static and time- dependent
models to describe six generating functions of the general solution to the
isotropy equation. Their common features and relations between them are
elucidated. A general formula for separable solutions is given, incorporating
collapse to a black hole or to a naked singularity.Comment: 26 page
Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)
[no abstract available
Inclusive J/psi production in pp collisions at sqrt(s) = 2.76 TeV
The ALICE Collaboration has measured inclusive J/psi production in pp
collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results
presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and
have been obtained by measuring the electron and muon pair decay channels,
respectively. The integrated luminosities for the two channels are L^e_int=1.1
nb^-1 and L^mu_int=19.9 nb^-1, and the corresponding signal statistics are
N_J/psi^e+e-=59 +/- 14 and N_J/psi^mu+mu-=1364 +/- 53. We present
dsigma_J/psi/dy for the two rapidity regions under study and, for the forward-y
range, d^2sigma_J/psi/dydp_t in the transverse momentum domain 0<p_t<8 GeV/c.
The results are compared with previously published results at sqrt(s)=7 TeV and
with theoretical calculations.Comment: 7 figures, 3 tables, accepted for publication in Phys. Lett.
- …