63 research outputs found

    Ecological integrity of boreal streams

    Get PDF
    Running waters provide a number of services for humans, such as drinking water and food resources and many freshwater animals are confined and specialised to this environment. However, this natural resource has become increasingly impacted by humans resulting in a substantial loss of biodiversity and services. To assess ecological integrity of streams a number of bioassessment schemes have been developed and most of these are based on community structure and composition. Although many of the biological metrics developed have been used successfully in bioassessment, it has been suggested that ecosystem functions, such as leaf-litter decomposition, should be incorporated in modern bioassessment schemes. In this thesis I compare a number of structural metrics with functional metrics along a nutrient gradient in nine boreal streams in south-central Sweden to assess the potential of ecosystem function as a biomonitoring tool. Leaf-litter breakdown (Alnus glutinosa (L.) Gaertner) was studied during four seasons and stable isotope (ÎŽ13C and ÎŽ15N) and stoichiometric ratios (C:N) of phytobenthos, CPOM, FPOM, invertebrates and fish were also analysed. My results indicate that leaf-litter breakdown is a relatively insensitive tool to assess ecosystem impairment compared to invertebrate metrics. However, ÎŽ15N in organic matter has been suggested as a potential tool to assess ecological integrity of streams and my results support this conjecture. A strong response in ÎŽ15N in organic matter with nutrient enrichment was revealed, suggesting that ÎŽ15N could serve as a simple tool to assess nutrient enrichment effects in boreal streams. I also found that leaf-litter associated fungi and invertebrates were positively correlated with leaf-litter breakdown rates and a nutrient gradient. Moreover, I found that certain dominating species, e.g. waterlouse (Asellus aquaticus (L.)), can have a strong influence on ecosystem processes. In this thesis I show that leaf-litter breakdown is not a simple low-cost biomonitoring tool as several field trips were necessary to assure adequate litter-bag recovery. Also natural factors, such as fluctuating water levels and heavy snow fall, resulted in substantial loss of litter bags thereby confounding data interpretation

    Diversity and functions of leaf-decaying fungi in human-altered streams

    Get PDF
    1. Stream conditions have been evaluated using leaf breakdown, and aquatic hyphomy- cetes are a diverse group of fungal decomposers which contribute to this process. 2. In field surveys of three pairs of impact-control stream sites we assessed the effect of eutrophication, mine pollution and modification of riparian vegetation on alder leaf breakdown rate in coarse and fine mesh bags and on mycelial biomass, spore production and species diversity of leaf-colonizing fungi. 3. In addition, we gathered published information on the response of leaf-colonizing fungi to these three types of perturbations. We conducted a meta-analysis of 23 published papers to look for consistent patterns across studies and to determine the relevance of four fungal- based metrics (microbial breakdown rate, maximum spore production, maximum mycelial biomass and total species richness) to detect stream impairment. 4. In our field surveys, leaf breakdown rates in coarse mesh bags were lower at impact than at paired control sites regardless of perturbation type. A similar trend was observed for leaf breakdown rates in fine mesh bags. Mycelial biomass and spore production were higher in the eutrophied stream than in the control stream. Spore production was depressed in the mine polluted stream, while it was slightly enhanced in the stream affected by forestry. Fungal diversity tended to be lower at impact than at paired control sites, though the mean and cumulative species richness values were often inconsistent. 5. Results of the meta-analysis confirmed that mine pollution reduces fungal diversity and performance. Eutrophication was not found to affect microbial breakdown rate, maximum spore production and maximum mycelial biomass in a predictable manner because both positive and negative effects were reported in the literature. However, fungal species richness was consistently reduced in eutrophied streams. Modification of riparian vegetation had at most a small stimulating effect on maximum spore production. Among the four fungal-based metrics included in the meta-analysis, maximum spore production emerged as the most sensitive indicator of human impact on streams. 6. Taken together, our findings indicate that human activities can affect the diversity and functions of aquatic hyphomycetes in streams. We also show that leaf breakdown rate and simple fungal-based metrics, such as spore production, are relevant to assess stream condition

    Contrasting responses to catchment modification among a range of functional and structural indicators of river ecosystem health

    Get PDF
    1. The value of measuring ecosystem functions in regular monitoring programs is increasingly being recognised as a potent tool for assessing river health. We measured the response of ecosystem metabolism, organic matter decomposition and strength loss, and invertebrate community composition across a gradient of catchment impairment defined by upstream landuse stress in two New Zealand streams. This was performed to determine if there were consistent responses among contrasting functional and structural indicators. 2. Rates of gross primary production (GPP) and ecosystem respiration (ER) ranged from 0.1 to 7.0 gO2 m−2 day−1 and from 0.34 to 16.5 gO2 m−2 day−1 respectively. Rates of GPP were variable across the landuse stress gradient, whereas ER increased linearly with the highest rates at the most impacted sites. Production/respiration (P/R) and net ecosystem metabolism (NEM) indicated that sites at the low and high ends of the stress gradient were heterotrophic with respiration rates presumably relying on organic matter from upstream sources, adjacent land or point sources. Sites with moderate impairment were predominantly autotrophic. 3. Declines in the tensile strength of the cotton strips showed no response across part of the gradient, but a strong response among the most impaired sites. The rate of mass loss of wooden sticks (Betula platyphylla Sukaczev) changed from a linear response to a U-shaped response across the impairment gradient after water temperature compensation, whereas leaf breakdown at a subset of sites suggested a linear loss in mass per degree-day. Three macroinvertebrate metrics describing the composition of the invertebrate community and its sensitivity to pollution showed similar linear inverse responses to the landuse stress gradient. 4. The first axis of a redundancy analysis indicated an association between landuse stress and various measures of water quality, and wooden stick mass loss, the invertebrate metric % EPT [percentage of macroinvertebrate taxa belonging to the Ephemeroptera, Plecoptera and Trichoptera (excluding Hydroptilidae] taxa, P/R and NEM, supporting the utility of these structural and functional metrics for assessing degree of landuse stress. The second axis was more strongly associated with catchment size, ER and GPP which suggests that these indicators were responding to differences in stream size. 5. Our results suggest that nonlinear responses to catchment impairment need to be considered when interpreting measurements of ecosystem function. Functional indicators could be useful for detecting relatively subtle changes where the slope of the response curve is maximised and measurements at the low and high ends of the impairment gradient are roughly equivalent. Such responses may be particularly valuable for detecting early signs of degradation at high quality sites, allowing management responses to be initiated before the degradation becomes too advanced, or for detecting initial moves away from degraded states during the early stages of restoration. Close links between structural and functional indices of river health across an impairment gradient are not necessarily expected or desirable if the aim is to minimise redundancy among ecological indicators

    When Is a Principal Charged With an Agent’s Knowledge?

    Get PDF
    Question: Detecting species presence in vegetation and making visual assessment of abundances involve a certain amount of skill, and therefore subjectivity. We evaluated the magnitude of the error in data, and its consequences for evaluating temporal trends. Location: Swedish forest vegetation. Methods: Vegetation data were collected independently by two observers in 342 permanent 100-m2 plots in mature boreal forests. Each plot was visited by one observer from a group of 36 and one of two quality assessment observers. The cover class of 29 taxa was recorded, and presence/absence for an additional 50. Results: Overall, one third of each occurrence was missed by one of the two observers, but with large differences among species. There were more missed occurrences at low abundances. Species occurring at low abundance when present tended to be frequently overlooked. Variance component analyses indicated that cover data on 5 of 17 species had a significant observer bias. Observer-explained variance was < 10% in 15 of 17 species. Conclusion: The substantial number of missed occurrences suggests poor power in detecting changes based on presence/absence data. The magnitude of observer bias in cover estimates was relatively small, compared with random error, and therefore potentially analytically tractable. Data in this monitoring system could be improved by a more structured working model during field work.Original publication: Milberg, P., Bergstedt, J., Fridman, J., Odell, G & Westerberg, L., Systematic and random variation in vegetation monitoring data, 2008, Journal of Vegetation Science, (19), 633-644. http://dx.doi.org/10.3170/2008-8-18423. Copyright: Opulus Press, http://www.opuluspress.se/index.ph

    Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient

    Get PDF
    We compared autumn decomposition rates of European alder leaves at four sites along the Lasset–Hers River system, southern France, to test whether changes in litter decomposition rates from upstream (1,300 m elevation) to downstream (690 m) could be attributed to temperature-driven differences in microbial growth, shredder activity, or composition of the shredder community. Alder leaves lost 75–87% of original mass in 57 days, of which 46–67% could be attributed to microbial metabolism and 8–29% to shredder activity, with no trend along the river. Mass loss rates in both fine-mesh (excluding shredders) and coarse-mesh (including shredders) bags were faster at warm, downstream sites (mean daily temperature 7–8°C) than upstream (mean 1–2°C), but the differ- ence disappeared when rates were expressed in heat units to remove the temperature effect. Mycelial biomass did not correlate with mass loss rates. Faster mass loss rates upstream, after temperature correction, evidently arise from more efficient shredding by Nemourid stoneflies than by the Leuctra-dominated assemblage downstream. The influence of water temperature on decomposition rate is therefore expressed both directly, through microbial metabolism, and indirectly, through the structure of shredder commu- nities. These influences are evident even in cold water where temperature variation is small

    Warming intensify CO2 flux and nutrient release from algal wrack subsidies on sandy beaches

    Get PDF
    Algal wrack subsidies underpin most of the food web structure of exposed sandy beaches and are responsible of important biogeochemical processes that link marine and terrestrial ecosystems. The response in decomposition of algal wrack deposits to global warming has not been studied in ocean-exposed sandy beaches to date. With this aim, passive open top chambers (OTCs) were used to increase soil temperature within the range predicted by the IPCC for western Europe (between 0.5 and 1.5 degrees C), following the hypothesis that the biogeochemical processing of macroalgal wrack subsidies would accelerate in response to temperature increase. The effect of temperature manipulation on three target substrates: fresh and aged macroalgae, and bare sand, was tested. Results indicated that a small warming (<0.5 degrees C) affected the wrack decomposition process through traceable increases in soil respiration through CO2 flux, inorganic nutrients within the interstitial environment (N and P), sediment organic contents measured through the amount of proteins and microbial pool through the total soil DNA. The different responses of soil variables in the studied substrates indicated that the decomposition stage of stranded macroalgae influences the biogeochemical processing of organic matter in sandy beaches. Thus, CO2 fluxes, releases of organic and inorganic nutrients and microbial activity intensify in aged wrack deposits. Our results predict that expected global warming will increase the release of inorganic nutrients to the coastal ocean by 30% for the N (21 Gg/year) and 5.9% for P (14 Gg/year); that increase for the flow of C to the atmosphere as CO2 was estimated in 8.2% (523 Gg/year). This study confirms the key role of sandy beaches in recycling ocean-derived organic matter, highlighting their sensitivity to a changing scenario of global warming that predicts significant increases in temperature over the next few decades.Peer reviewe

    Freshwater ecosystem structure-function relationships: from theory to application

    No full text
    P>1. In this issue we aimed to answer the questions: (i) under what circumstances are functional variables better than structural ones for assessing ecosystem health? and (ii) are there good indicators of change in ecological functioning along perturbation gradients? 2. Of the numerous functional indicators tested in this issue, several show a response to anthropogenic stress and could be included in assessments of ecosystem health and integrity in running waters. 3. In three of eight studies, function showed a stronger response to anthropogenic stress than structure, whereas one study showed a response in structure and not function, and four studies showed responses in both structure and function. Thus structure alone could not detect all types of impairment and functional aspects should also be included and further developed for assessing running-water ecosystem health and integrity. Functional variables may be especially useful in situations where there is a stronger response among organisms not usually included in stream assessment (e.g. fungi and bacteria) than the commonly used invertebrate, macrophytes and fish indicators. 4. Leading research questions related to the use of functional indicators in running waters include: (i) how large is natural and operator-induced variation for functional indicators? (ii) how small of an effect size (delta) can be detected using structural versus functional indicators? and (iii) how do we efficiently improve theories as well as predictive ability for functional measures to assess the effects of anthropogenic stressors? 5. To advance the use of functional indicators in applied running-water studies, we need to supplement the approach of using large-scale datasets and correlation with ecosystem manipulations
    • 

    corecore