18 research outputs found

    C-terminal methylation of truncated neuropeptides: An enzyme- assistedextraction artifact involving methanol

    Get PDF
    Neuropeptides are the largest class of signaling molecules used by nervous systems. Today, neuropeptidediscovery commonly involves chemical extraction from a tissue source followed by mass spectrometriccharacterization. Ideally, the extraction procedure accurately preserves the sequence and any inher-ent modifications of the native peptides. Here, we present data showing that this is not always true.Specifically, we present evidence showing that, in the lobster Homarus americanus, the orcokinin fam-ily members, NFDEIDRSGFG-OMe and SSEDMDRLGFG-OMe, are non-native peptides generated fromfull-length orcokinin precursors as the result of a highly selective peptide modification (peptide trun-cation with C-terminal methylation) that occurs during extraction. These peptides were observed byMALDI-FTMS and LC-Q-TOFMS analyses when eyestalk ganglia were extracted in a methanolic solvent,but not when tissues were dissected, co-crystallized with matrix, and analyzed directly with methanolexcluded from the sample preparation. The identity of NFDEIDRSGFG-OMe was established using MALDI-FTMS/SORI-CID, LC-Q-TOFMS/MS, and comparison with a peptide standard. Extraction substitutingdeuterated methanol for methanol confirmed that the latter is the source of the C-terminal methyl group,and MS/MS confirmed the C-terminal localization of the added CD3. Surprisingly, NFDEIDRSGFG-OMe isnot produced via a chemical acid-catalyzed esterification. Instead, the methylated peptide appears toresult from proteolytic truncation in the presence of methanol, as evidenced by a reduction in conver-sion with the addition of a protease-inhibitor cocktail; heat effectively eliminated the conversion. Thisunusual and highly specific extraction-derived peptide conversion exemplifies the need to consider bothchemical and biochemical processes that may modify the structure of endogenous neuropeptides. © 2013 The Authors. Published by Elsevier Inc. All rights reserved

    DSIF and RNA Polymerase II CTD Phosphorylation Coordinate the Recruitment of Rpd3S to Actively Transcribed Genes

    Get PDF
    Histone deacetylase Rpd3 is part of two distinct complexes: the large (Rpd3L) and small (Rpd3S) complexes. While Rpd3L targets specific promoters for gene repression, Rpd3S is recruited to ORFs to deacetylate histones in the wake of RNA polymerase II, to prevent cryptic initiation within genes. Methylation of histone H3 at lysine 36 by the Set2 methyltransferase is thought to mediate the recruitment of Rpd3S. Here, we confirm by ChIP–Chip that Rpd3S binds active ORFs. Surprisingly, however, Rpd3S is not recruited to all active genes, and its recruitment is Set2-independent. However, Rpd3S complexes recruited in the absence of H3K36 methylation appear to be inactive. Finally, we present evidence implicating the yeast DSIF complex (Spt4/5) and RNA polymerase II phosphorylation by Kin28 and Ctk1 in the recruitment of Rpd3S to active genes. Taken together, our data support a model where Set2-dependent histone H3 methylation is required for the activation of Rpd3S following its recruitment to the RNA polymerase II C-terminal domain

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Protective effects of maternal nutritional supplementation with lactoferrin on growth and brain metabolism.

    Get PDF
    Background:Intrauterine growth restriction (IUGR) is a major risk factor for both perinatal and long-term morbidity. Bovine lactoferrin (bLf) is a major milk glycoprotein considered as a pleiotropic functional nutrient. The impact of maternal supplementation with bLf on IUGR-induced sequelae, including inadequate growth and altered cerebral development, remains unknown.Methods:IUGR was induced through maternal dexamethasone infusion (100 μg/kg during last gestational week) in rats. Maternal supplementation with bLf (0.85% in food pellet) was provided during both gestation and lactation. Pup growth was monitored, and Pup brain metabolism and gene expression were studied using in vivo (1)H NMR spectroscopy, quantitative PCR, and microarray in the hippocampus at postnatal day (PND)7.Results:Maternal bLf supplementation did not change gestational weight but increased the birth body weight of control pups (4%) with no effect on the IUGR pups. Maternal bLf supplementation allowed IUGR pups to recover a normalized weight at PND21 (weaning) improving catch-up growth. Significantly altered levels of brain metabolites (γ-aminobutyric acid, glutamate, N-acetylaspartate, and N-acetylaspartylglutamate) and transcripts (brain-derived neurotrophic factor (BDNF), divalent metal transporter 1 (DMT-1), and glutamate receptors) in IUGR pups were normalized with maternal bLf supplementation.Conclusion:Our data suggest that maternal bLf supplementation is a beneficial nutritional intervention able to revert some of the IUGR-induced sequelae, including brain hippocampal changes

    Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers

    Get PDF
    Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67 degrees N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESM5), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes
    corecore