27 research outputs found

    Phylogeography of the Atlantic Blue Crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining Origins and Genetic Connectivity of a Large-Scale Invasion

    Get PDF
    The American blue crab Callinectes sapidus is a particularly successful invader in estuarine ecosystems worldwide. Despite increasing awareness of its potential harm, the invasion history and underlying genetic diversity of this species within the Mediterranean Sea remain unknown. This study constitutes the first large-scale approach to study phylogeographic patterns of C. sapidus in Europe, facilitated by the first comparison of all currently available COI sequence data. For this investigation, 71 individuals of C. sapidus were newly analyzed and the entire COI gene was sequenced and used for a comparative phylogeographic analyses. For the first time, two separately used adjacent regions of this gene were combined in a single dataset. This allowed emphasizing the prevalence of three geographically defined lineages within the native range: (1) eastern North America, including the Gulf of Mexico, (2) the Caribbean, and (3) Brazil. New data from the Mediterranean reveal that non-native populations of C. sapidus are characterized by a conspicuously low genetic diversity (except for Turkey, where stocking took place), and that there is surprisingly low connectivity among established populations. The occurrence of strong genetic bottlenecks suggests few founder individuals. This confirms that, even under a scenario of restricted large-scale gene flow, a very limited number of invasive individuals is sufficient for a massive impact

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Maladaptive avoidance learning in the orbitofrontal cortex in adolescents with major depression

    Get PDF
    BACKGROUND Understanding the mechanisms in the brain's incentive network that give rise to symptoms of major depressive disorder (MDD) during adolescence provides new perspectives to address MDD in early stages of development. This functional magnetic resonance imaging study determines whether instrumental vigor and brain responses to appetitive and aversive monetary incentives are altered in adolescent MDD and associated with symptom severity. METHODS Adolescents with moderate to severe MDD (n=30, age=16.1 [1.4]), and healthy controls (n=33, age=16.2 [1.9]) matched for age, sex, and IQ performed a monetary incentive delay task. During outcome presentation, prediction error signals were used to study the response and coupling of the incentive network during learning of cue-outcome associations. A computational reinforcement model was used to assess adaptation of response vigor. Brain responses and effective connectivity to model-derived prediction errors were assessed and related to depression severity and anhedonia levels. RESULTS Participants with MDD behaved according to a more simplistic learning model and exhibited slower learning. Effective connectivity analysis of fMRI data revealed that impaired loss error processing in the orbitofrontal cortex was associated with aberrant gain-control. Anhedonia scores correlated with loss-related error signals in the posterior insula and habenula. CONCLUSIONS Adolescent MDD is selectively related to impaired processing of error signals during loss, but not reward, in the orbitofrontal cortex. Aberrant evaluation of loss outcomes might reflect an early mechanism of how negative bias and helplessness manifest in the brain. This approach sheds light on pathomechanisms in MDD and may improve early diagnosis and treatment selection

    Phylogeography of the Atlantic Blue Crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining Origins and Genetic Connectivity of a Large-Scale Invasion

    Get PDF
    The American blue crab Callinectes sapidus is a particularly successful invader in estuarine ecosystems worldwide. Despite increasing awareness of its potential harm, the invasion history and underlying genetic diversity of this species within the Mediterranean Sea remain unknown. This study constitutes the first large-scale approach to study phylogeographic patterns of C. sapidus in Europe, facilitated by the first comparison of all currently available COI sequence data. For this investigation, 71 individuals of C. sapidus were newly analyzed and the entire COI gene was sequenced and used for a comparative phylogeographic analyses. For the first time, two separately used adjacent regions of this gene were combined in a single dataset. This allowed emphasizing the prevalence of three geographically defined lineages within the native range: (1) eastern North America, including the Gulf of Mexico, (2) the Caribbean, and (3) Brazil. New data from the Mediterranean reveal that non-native populations of C. sapidus are characterized by a conspicuously low genetic diversity (except for Turkey, where stocking took place), and that there is surprisingly low connectivity among established populations. The occurrence of strong genetic bottlenecks suggests few founder individuals. This confirms that, even under a scenario of restricted large-scale gene flow, a very limited number of invasive individuals is sufficient for a massive impact

    Phylogeography of the Atlantic Blue Crab <i>Callinectes sapidus</i> (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining Origins and Genetic Connectivity of a Large-Scale Invasion

    Get PDF
    The American blue crab Callinectes sapidus is a particularly successful invader in estuarine ecosystems worldwide. Despite increasing awareness of its potential harm, the invasion history and underlying genetic diversity of this species within the Mediterranean Sea remain unknown. This study constitutes the first large-scale approach to study phylogeographic patterns of C. sapidus in Europe, facilitated by the first comparison of all currently available COI sequence data. For this investigation, 71 individuals of C. sapidus were newly analyzed and the entire COI gene was sequenced and used for a comparative phylogeographic analyses. For the first time, two separately used adjacent regions of this gene were combined in a single dataset. This allowed emphasizing the prevalence of three geographically defined lineages within the native range: (1) eastern North America, including the Gulf of Mexico, (2) the Caribbean, and (3) Brazil. New data from the Mediterranean reveal that non-native populations of C. sapidus are characterized by a conspicuously low genetic diversity (except for Turkey, where stocking took place), and that there is surprisingly low connectivity among established populations. The occurrence of strong genetic bottlenecks suggests few founder individuals. This confirms that, even under a scenario of restricted large-scale gene flow, a very limited number of invasive individuals is sufficient for a massive impact

    Phylogeography of the Atlantic Blue Crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining Origins and Genetic Connectivity of a Large-Scale Invasion

    Full text link
    [EN] Due to its large size and importance in commercial and recreational fishery, the blue crab, Callinectes sapidus, has always been a well-known crab species all along the temperate and tropical American east coast. Over the past century, there have been increasing reports of this species from Africa, Asia, and Europe. However, the corresponding introduction pathways remain a reason for speculation. Its long larval development in marine plankton and tolerance towards varying salinities are prerequisites for a successful dispersal by marine currents or in ballast waters. On the other hand, being a highly valued seafood, it is conceivable that C. sapidus may have been intentionally released to establish breeding populations elsewhere. The species started expanding conspicuously in the east Mediterranean after the 1930s (Nile Delta, Thessaloniki Bay). On the other hand, western Mediterranean records are much more recent and regionally confined. The reconstruction of their origin is the main goal of the current study. For that purpose, the genetic composition of populations from the American native range and from the entire Mediterranean needed to be included and used for the overall comparison. It appears that only a few founding individuals are responsible for the invasion into Spanish and Italian waters, arguing in favor of a dispersal theory. The American blue crab Callinectes sapidus is a particularly successful invader in estuarine ecosystems worldwide. Despite increasing awareness of its potential harm, the invasion history and underlying genetic diversity of this species within the Mediterranean Sea remain unknown. This study constitutes the first large-scale approach to study phylogeographic patterns of C. sapidus in Europe, facilitated by the first comparison of all currently available COI sequence data. For this investigation, 71 individuals of C. sapidus were newly analyzed and the entire COI gene was sequenced and used for a comparative phylogeographic analyses. For the first time, two separately used adjacent regions of this gene were combined in a single dataset. This allowed emphasizing the prevalence of three geographically defined lineages within the native range: (1) eastern North America, including the Gulf of Mexico, (2) the Caribbean, and (3) Brazil. New data from the Mediterranean reveal that non-native populations of C. sapidus are characterized by a conspicuously low genetic diversity (except for Turkey, where stocking took place), and that there is surprisingly low connectivity among established populations. The occurrence of strong genetic bottlenecks suggests few founder individuals. This confirms that, even under a scenario of restricted large-scale gene flow, a very limited number of invasive individuals is sufficient for a massive impact.Schubart, CD.; Deli, T.; Mancinelli, G.; Cilenti, L.; Gil-Fernández, A.; Falco, S.; Berger, S. (2023). Phylogeography of the Atlantic Blue Crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining Origins and Genetic Connectivity of a Large-Scale Invasion. Biology. 12(1):1-18. https://doi.org/10.3390/biology1201003511812

    Improved diagnostics help to identify clinical features and biomarkers that predict Mycoplasma pneumoniae community-acquired pneumonia in children

    Get PDF
    BACKGROUND There are no reliable signs or symptoms that differentiate Mycoplasma pneumoniae (Mp) infection in community-acquired pneumonia (CAP) from other etiologies. Additionally, current diagnostic tests do not reliably distinguish between Mp infection and carriage. We previously determined that the measurement of Mp-specific IgM antibody-secreting cells (ASCs) by enzyme-linked immunospot (ELISpot) assay allowed for differentiation between infection and carriage. Using this new diagnostic test, we aimed to identify clinical and laboratory features associated with Mp infection. METHODS This is a prospective cohort study of children, 3-18 years, with CAP from 2016-2017. Clinical features and biomarkers were compared between Mp-positive and -negative groups by Mann-Whitney U test or Fisher's exact test, as appropriate. Area under the receiver operating characteristics curves (AUC) differences and optimal thresholds were determined by using the DeLong's test and Youden's J statistic, respectively. RESULTS Out of 63 CAP patients, there were 29 Mp-positive (46%). Mp-positive was statistically associated with older age (median 8.6 vs. 4.7 years), no underlying disease, family with respiratory symptoms, prior antibiotic treatment, prolonged prodromal respiratory symptoms and fever, and extrapulmonary (skin) manifestations. Lower levels of C-reactive protein, white blood cell count, absolute neutrophil count, and procalcitonin (PCT), specifically PCT 5 years (AUC=0.77), prodromal fever and respiratory symptoms >6 days (AUC=0.79), and PCT <0.25 ÎĽg/L (AUC=0.81) improved diagnostic performance (AUC=0.90, p=0.05). CONCLUSIONS A combination of clinical features and biomarkers may aid physicians in identifying patients at high risk for Mp CAP
    corecore