10 research outputs found

    Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    Calibration of the LIGO strain data was performed with a GstLAL-based calibration software pipeline (Viets et al. 2018). Calibration of the Virgo strain data was performed with C-based software (Acernese et al. 2022b). Data quality products and event-validation results were computed using the DMT (https://labcit.ligo.caltech.edu/~jzweizig/DMT-Project. html), DQR (https://docs.ligo.org/detchar/data-quality-report/), DQSEGDB (Fisher et al. 2021), gwdetchar (Macloed et al. 2021a), hveto (Smith et al. 2011), iDQ (Essick et al. 2020), and Omicron (Robinet et al. 2020) software packages and contribut- ing software tools. Analyses relied upon the LALSuite software library (LIGO Scientific Collaboration 2018). PESummary was used to postprocess and collate parameter estimation results (Hoy & Raymond 2021). For an exhaustive list of the software used for searching the GW signals and characterizing their source, see Abbott et al. (2021c). Plots were prepared with Matplotlib (Hunter 2007), seaborn (Waskom 2021), GWSumm (Macleod et al. 2021b), and GWpy (Macleod et al. 2021c). NumPy (Harris et al. 2020) and SciPy (Virtanen et al. 2020) were used in the preparation of the manuscript. This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max- Planck-Society (MPS), and the State of Niedersachsen/ Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowl- edge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research (NWO) for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d'Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union – European Regional Development Fund; Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS- FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Founda- tion for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to- Core Program A, Advanced Research Networks, JSPS Grant- in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF), Computing Infrastruc- ture Project of Global Science experimental Data hub Center (GSDC) at KISTI, Korea Astronomy and Space Science Institute (KASI), and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the National Science and Technology Council (NSTC) in Taiwan under grants including the Rising Star Program and Science Vanguard Research Program, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK.Peer reviewe

    Search for supersymmetry in events with one lepton and multiple jets exploiting the angular correlation between the lepton and the missing transverse momentum in proton-proton collisions at sqrts=sqrt{s} = 13 TeV. Search for supersymmetry in events with one lepton and multiple jets exploiting the angular correlation between the lepton and the missing transverse momentum in proton-proton collisions at sqrts=sqrt{s} = 13 TeV

    No full text

    Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at sqrts=sqrt{s} = 8 TeV

    No full text

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Get PDF
    International audienceDespite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90% confidence level

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    No full text
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U⁢(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U⁢(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation timescale of DM

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Get PDF
    Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that have already been identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total source-frame mass M &gt; 70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper limit for the merger rate density of high-mass binaries with eccentricities 0 &lt; e ≤ 0.3 at 16.9 Gpc−3 yr−1 at the 90% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    International audienceAmong the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)BLU(1)_{B-L} gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)BLU(1)_{B-L} gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Combinations of single-top-quark production cross-section measurements and |fLVVtb| determinations at s \sqrt{s} = 7 and 8 TeV with the ATLAS and CMS experiments

    No full text
    Abstract This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at s \sqrt{s} s = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb−1 at s \sqrt{s} s = 7 TeV and 12.2 to 20.3 fb−1 at s \sqrt{s} s = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 ± 5.7 pb and 87.7 ± 5.8 pb at s \sqrt{s} s = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 ± 4.1 pb and 23.1 ± 3.6 pb at s \sqrt{s} s = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 ± 1.4 pb at s \sqrt{s} s = 8 TeV. The square of the magnitude of the CKM matrix element V tb multiplied by a form factor f LV is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V td |, |V ts | ≪ |V tb |. All the |f LV V tb |2 determinations, extracted from individual ratios at s \sqrt{s} s = 7 and 8 TeV, are combined, resulting in |f LV V tb | = 1.02 ± 0.04 (meas.) ± 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions. </jats:p
    corecore