194 research outputs found

    Misconceptions about Aerobic and Anaerobic Energy Expenditure

    Get PDF
    The measurement of gas exchange has played an invaluable role in metabolic interpretation. The uptake of 1 liter of oxygen is often converted into an energy expenditure estimate of 21.1 kilojoules (e.g., 1 L O2 = 21.1 kJ or ~5 kcal). This article demonstrates both the importance of such a conversion and the potential for misinterpretation. Oxygen uptake during heavy and severe exercise will also be discussed

    Influence of oxygen tension on myocardial performance. Evaluation by tissue Doppler imaging

    Get PDF
    BACKGROUND: Low O(2 )tension dilates coronary arteries and high O(2 )tension is a coronary vasoconstrictor but reports on O(2)-dependent effects on ventricular performance diverge. Yet oxygen supplementation remains first line treatment in cardiovascular disease. We hypothesized that hypoxia improves and hyperoxia worsens myocardial performance. METHODS: Seven male volunteers (mean age 38 ± 3 years) were examined with echocardiography at respiratory equilibrium during: 1) normoxia (≈21% O(2), 79% N(2)), 2) while inhaling a hypoxic gas mixture (≈11% O(2), 89% N(2)), and 3) while inhaling 100% O(2). Tissue Doppler recordings were acquired in the apical 4-chamber, 2-chamber, and long-axis views. Strain rate and tissue tracking displacement analyses were carried out in each segment of the 16-segment left ventricular model and in the basal, middle and apical portions of the right ventricle. RESULTS: Heart rate increased with hypoxia (68 ± 4 bpm at normoxia vs. 79 ± 5 bpm, P < 0.001) and decreased with hyperoxia (59 ± 5 bpm, P < 0.001 vs. normoxia). Hypoxia increased strain rate in four left ventricular segments and global systolic contraction amplitude was increased (normoxia: 9.76 ± 0.41 vs hypoxia: 10.87 ± 0.42, P < 0.001). Tissue tracking displacement was reduced in the right ventricular segments and tricuspid regurgitation increased with hypoxia (7.5 ± 1.9 mmHg vs. 33.5 ± 1.8 mmHg, P < 0.001). The TEI index and E/E' did not change with hypoxia. Hyperoxia reduced strain rate in 10 left ventricular segments, global systolic contraction amplitude was decreased (8.83 ± 0.38, P < 0.001 vs. normoxia) while right ventricular function was unchanged. The spectral and tissue Doppler TEI indexes were significantly increased but E/E' did not change with hyperoxia. CONCLUSION: Hypoxia improves and hyperoxia worsens systolic myocardial performance in healthy male volunteers. Tissue Doppler measures of diastolic function are unaffected by hypoxia/hyperoxia which support that the changes in myocardial performance are secondary to changes in vascular tone. It remains to be settled whether oxygen therapy to patients with heart disease is a consistent rational treatment

    Body circumferences: clinical implications emerging from a new geometric model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Body volume expands with the positive energy balance associated with the development of adult human obesity and this "growth" is captured by two widely used clinical metrics, waist circumference and body mass index (BMI). Empirical correlations between circumferences, BMI, and related body compartments are frequently reported but fail to provide an important common conceptual foundation that can be related to key clinical observations. A two-phase program was designed to fill this important gap: a geometric model linking body volume with circumferences and BMI was developed and validated in cross-sectional cohorts; and the model was applied to the evaluation of longitudinally monitored subjects during periods of voluntary weight loss. Concepts emerging from the developed model were then used to examine the relations between the evaluated clinical measures and body composition.</p> <p>Methods</p> <p>Two groups of healthy adults (n = 494 and 1499) were included in the cross-sectional model development/testing phase and subjects in two previous weight loss studies were included in the longitudinal model evaluation phase. Five circumferences (arm, waist, hip, thigh, and calf; average of sum, C), height (H), BMI, body volume (V; underwater weighing), and the volumes of major body compartments (whole-body magnetic resonance imaging) were measured.</p> <p>Results</p> <p>The evaluation of a humanoid geometric model based a cylinder confirmed that V derived from C and H was highly correlated with measured V [R<sup>2 </sup>both males and females, 0.97; p < 0.001). Developed allometric models confirmed model predictions that C and BMI (represented as V/H) are directly linked as, C = (V/H)<sup>0.5</sup>. The scaling of individual circumferences to V/H varied, with waist the highest (V/H<sup>~0.6</sup>) and calf the lowest (V/H<sup>~0.3</sup>), indicating that the largest and smallest between-subject "growth" with greater body volume occurs in the abdominal area and lower extremities, respectively. A stepwise linear regression model including all five circumferences<sup>2 </sup>showed that each contributed independently to V/H. These cross-sectional observations were generally confirmed by analysis of the two longitudinal weight loss studies. The scaling of circumference ratios (e.g., waist/hip) to V/H conformed to models developed on the scaling of individual circumferences to V/H, indicating their relations to BMI are predictable <it>a priori</it>. Waist, hip, and arm/calf circumferences had the highest associations with whole-body visceral adipose tissue, subcutaneous adipose tissue, and skeletal muscle volumes, respectively.</p> <p>Conclusion</p> <p>These observations provide a simple geometric model relating circumferences with body size and composition, introduce a conceptual foundation explaining previous empirical observations, and reveal new clinical insights.</p

    Testing predictions on body mass and gut contents: dissection of an African elephant Loxodonta africana Blumenbach 1797

    Full text link
    The values reported in the literature for the total gastrointestinal tract (GIT) content mass of elephants are lower than expected from interspecific mammalian regression. This finding agrees with theoretical considerations that elephants should have less capacious GITs than other herbivorous mammals, resulting in short ingesta retention times. However, the data on elephants was so far derived from either diseased zoo specimens or free-ranging animals subjected to an unknown hunting stress. In this study, we weighed the wet contents of the GIT segments of a captive African elephant that was euthanased because of a positive serological tuberculosis test, but that was clinically healthy, did not show a reduced appetite, and ingested food up to the time of euthanasia. The animal weighed 3,140 kg and its total gut contents were 542 kg or 17% of body mass. This is in close accord with the published mammalian herbivore regression equation of Parra (Comparison of foregut and hindgut fermentation in herbivores. In: Montgomery GG (ed) The ecology of arboreal folivores. Smithsonian Institution Press, Washington DC, pp205-230, 1978) and contradicts the notion that elephants have comparatively less capacious gastrointestinal tracts. Data on the individual gut segments, however, do support earlier suspicions that elephants have a comparatively less capacious caecum and a disproportionally capacious colon

    Perioperative and long-term operative outcomes after surgery for trigeminal neuralgia: microvascular decompression vs percutaneous balloon ablation

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>Numerous medical and surgical therapies have been utilized to treat the symptoms of trigeminal neuralgia (TN). This retrospective study compares patients undergoing either microvascular decompression or balloon ablation of the trigeminal ganglion and determines which produces the best long-term outcomes.</p> <p>Methods</p> <p>A 10-year retrospective chart review was performed on patients who underwent microvascular decompression (MVD) or percutaneous balloon ablation (BA) surgery for TN. Demographic data, intraoperative variables, length of hospitalization and symptom improvement were assessed along with complications and recurrences of symptoms after surgery. Appropriate statistical comparisons were utilized to assess differences between the two surgical techniques.</p> <p>Results</p> <p>MVD patients were younger but were otherwise similar to BA patients. Intraoperatively, twice as many BA patients developed bradycardia compared to MVD patients. 75% of BA patients with bradycardia had an improvement of symptoms. Hospital stay was shorter in BA patients but overall improvement of symptoms was better with MVD. Postoperative complication rates were similar (21% vs 26%) between the BA and MVD groups.</p> <p>Discussion</p> <p>MVD produced better overall outcomes compared to BA and may be the procedure of choice for surgery to treat TN.</p

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity

    Get PDF
    Life is a combustion, but how the major fuel substrates that sustain human life compete and interact with each other for combustion has been at the epicenter of research into the pathogenesis of insulin resistance ever since Randle proposed a 'glucose-fatty acid cycle' in 1963. Since then, several features of a mutual interaction that is characterized by both reciprocality and dependency between glucose and lipid metabolism have been unravelled, namely: 1. the inhibitory effects of elevated concentrations of fatty acids on glucose oxidation (via inactivation of mitochondrial pyruvate dehydrogenase or via desensitization of insulin-mediated glucose transport), 2. the inhibitory effects of elevated concentrations of glucose on fatty acid oxidation (via malonyl-CoA regulation of fatty acid entry into the mitochondria), and more recently 3. the stimulatory effects of elevated concentrations of glucose on de novo lipogenesis, that is, synthesis of lipids from glucose (via SREBP1c regulation of glycolytic and lipogenic enzymes). This paper first revisits the physiological significance of these mutual interactions between glucose and lipids in skeletal muscle pertaining to both blood glucose and intramyocellular lipid homeostasis. It then concentrates upon emerging evidence, from calorimetric studies investigating the direct effect of leptin on thermogenesis in intact skeletal muscle, of yet another feature of the mutual interaction between glucose and lipid oxidation: that of substrate cycling between de novo lipogenesis and lipid oxidation. It is proposed that this energy-dissipating substrate cycling that links glucose and lipid metabolism to thermogenesis could function as a 'fine-tuning' mechanism that regulates intramyocellular lipid homeostasis, and hence contributes to the protection of skeletal muscle against lipotoxicity
    • 

    corecore