28 research outputs found

    Subcutaneous nerve stimulation for rate control in ambulatory dogs with persistent atrial fibrillation

    Get PDF
    Background Subcutaneous nerve stimulation (ScNS) damages the stellate ganglion and improves rhythm control of atrial fibrillation (AF) in ambulatory dogs. Objective The purpose of this study was to test the hypothesis that thoracic ScNS can improve rate control in persistent AF. Methods We created persistent AF in 13 dogs and randomly assigned them to ScNS (n = 6) and sham control (n = 7) groups. 18F-2-Fluoro-2-deoxyglucose positron emission tomography/magnetic resonance imaging of the brain stem was performed at baseline and at the end of the study. Results The average stellate ganglion nerve activity reduced from 4.00 ± 1.68 μV after the induction of persistent AF to 1.72 ± 0.42 μV (P = .032) after ScNS. In contrast, the average stellate ganglion nerve activity increased from 3.01 ± 1.26 μV during AF to 5.52 ± 2.69 μV after sham stimulation (P = .023). The mean ventricular rate during persistent AF reduced from 149 ± 36 to 84 ± 16 beats/min (P = .011) in the ScNS group, but no changes were observed in the sham control group. The left ventricular ejection fraction remained unchanged in the ScNS group but reduced significantly in the sham control group. Immunostaining showed damaged ganglion cells in bilateral stellate ganglia and increased brain stem glial cell reaction in the ScNS group but not in the control group. The 18F-2-fluoro-2-deoxyglucose uptake in the pons and medulla was significantly (P = .011) higher in the ScNS group than the sham control group at the end of the study. Conclusion Thoracic ScNS causes neural remodeling in the brain stem and stellate ganglia, controls the ventricular rate, and preserves the left ventricular ejection fraction in ambulatory dogs with persistent AF

    Plcg2M28L Interacts With High Fat/High Sugar Diet to Accelerate Alzheimer\u27s Disease-Relevant Phenotypes in Mice.

    Get PDF
    Obesity is recognized as a significant risk factor for Alzheimer\u27s disease (AD). Studies have supported the notion that obesity accelerates AD-related pathophysiology in mouse models of AD. The majority of studies, to date, have focused on the use of early-onset AD models. Here, we evaluate the impact of genetic risk factors on late-onset AD (LOAD) in mice fed with a high fat/high sugar diet (HFD). We focused on three mouse models created through the IU/JAX/PITT MODEL-AD Center. These included a combined risk model wit

    Prophylactic evaluation of verubecestat on disease- and symptom-modifying effects in 5XFAD mice.

    Get PDF
    Introduction: Alzheimer\u27s disease (AD) is the most common form of dementia. Beta-secretase (BACE) inhibitors have been proposed as potential therapeutic interventions; however, initiating treatment once disease has significantly progressed has failed to effectively stop or treat disease. Whether BACE inhibition may have efficacy when administered prophylactically in the early stages of AD has been under-investigated. The present studies aimed to evaluate prophylactic treatment of the BACE inhibitor verubecestat in an AD mouse model using the National Institute on Aging (NIA) resources of the Model Organism Development for Late-Onset Alzheimer\u27s Disease (MODEL-AD) Preclinical Testing Core (PTC) Drug Screening Pipeline. Methods: 5XFAD mice were administered verubecestat ad libitum in chow from 3 to 6 months of age, prior to the onset of significant disease pathology. Following treatment (6 months of age), in vivo imaging was conducted with 18F-florbetapir (AV-45/Amyvid) (18F-AV45) and 18-FDG (fluorodeoxyglucose)-PET (positron emission tomography)/MRI (magnetic resonance imaging), brain and plasma amyloid beta (Aβ) were measured, and the clinical and behavioral characteristics of the mice were assessed and correlated with the pharmacokinetic data. Results: Prophylactic verubecestat treatment resulted in dose- and region-dependent attenuations of 18F-AV45 uptake in male and female 5XFAD mice. Plasma Aβ40 and Aβ42 were also dose-dependently attenuated with treatment. Across the dose range evaluated, side effects including coat color changes and motor alterations were reported, in the absence of cognitive improvement or changes in 18F-FDG uptake. Discussion: Prophylactic treatment with verubecestat resulted in attenuated amyloid plaque deposition when treatment was initiated prior to significant pathology in 5XFAD mice. At the same dose range effective at attenuating Aβ levels, verubecestat produced side effects in the absence of improvements in cognitive function. Taken together these data demonstrate the rigorous translational approaches of the MODEL-AD PTC for interrogating potential therapeutics and provide insight into the limitations of verubecestat as a prophylactic intervention for early-stage AD

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Understanding and Improving Teamwork in Organizations: A Scientifically Based Practical Guide

    No full text
    Teams are pervasive in today’s world, and rightfully so as we need them. Drawing upon the existing extensive body of research surrounding the topic of teamwork, we delineate nine “critical considerations” that serve as a practical heuristic by which HR leaders can determine what is needed when they face situations involving teamwork. Our heuristic is not intended to be the definitive set of all considerations for teamwork, but instead consolidates key findings from a vast literature to provide an integrated understanding of the underpinnings of teamwork— specifically, what should be considered when selecting, developing, and maintaining teams. This heuristic is designed to help those in practice diagnose team-based problems by providing a clear focus on relevant aspects of teamwork. To this end, we first define teamwork and its related elements. Second, we offer a high-level conceptualization of and justification for the nine selected considerations underlying the heuristic, which is followed by a more in-depth synthesis of related literature as well as empirically-driven practical guidance. Third, we conclude with a discussion regarding how this heuristic may best be used from a practical standpoint, as well as offer areas for future research regarding both teamwork and its critical considerations

    Understanding And Improving Teamwork In Organizations: A Scientifically Based Practical Guide

    No full text
    Teams are pervasive in today\u27s world, and rightfully so as we need them. Drawing upon the existing extensive body of research surrounding the topic of teamwork, we delineate nine critical considerations that serve as a practical heuristic by which HR leaders can determine what is needed when they face situations involving teamwork. Our heuristic is not intended to be the definitive set of all considerations for teamwork, but instead consolidates key findings from a vast literature to provide an integrated understanding of the underpinnings of teamwork-specifically, what should be considered when selecting, developing, and maintaining teams. This heuristic is designed to help those in practice diagnose team-based problems by providing a clear focus on relevant aspects of teamwork. To this end, we first define teamwork and its related elements. Second, we offer a high-level conceptualization of and justification for the nine selected considerations underlying the heuristic, which is followed by a more in-depth synthesis of related literature as well as empirically-driven practical guidance. Third, we conclude with a discussion regarding how this heuristic may best be used from a practical standpoint, as well as offer areas for future research regarding both teamwork and its critical considerations

    Evaluation of chronic lead effects in the blood brain barrier system by DCE-CT

    Get PDF
    Background: Lead (Pb) is an environmental factor has been suspected of contributing to the dementia including Alzheimer's disease (AD). Our previous studies have shown that Pb exposure at the subtoxic dose increased brain levels of beta-amyloid (Aβ) and amyloid plaques, a pathological hallmark for AD, in amyloid precursor protein (APP) transgenic mice, and is hypothesized to inhibit Aβ clearance in the blood- cerebrospinal fluid (CSF) barrier. However, it remains unclear how different levels of Pb affect Aβ clearance in the whole blood-brain barrier system. This study was designed to investigate whether chronic exposure of Pb affected the permeability of the blood-brain barrier system by using the Dynamic Contrast-Enhanced Computerized Tomography (DCE-CT) method. Methods: DEC-CT was used to investigate whether chronic exposure of toxic Pb affected the permeability of the real-time blood brain barrier system. Results: Data showed that Pb exposure increased permeability surface area product, and also significantly induced brain perfusion. However, Pb exposure did not alter extracellular volumes or fractional blood volumes of mouse brain. Conclusion: Our data suggest that Pb exposure at subtoxic and toxic levels directly targets the brain vasculature and damages the blood brain barrier system

    Inhibition of serum- and glucocorticoid-induced kinase 1 ameliorates hydrocephalus in preclinical models

    No full text
    Abstract Background Hydrocephalus is a pathological accumulation of cerebrospinal fluid (CSF), leading to ventriculomegaly. Hydrocephalus may be primary or secondary to traumatic brain injury, infection, or intracranial hemorrhage. Regardless of cause, current treatment involves surgery to drain the excess CSF. Importantly, there are no long-term, effective pharmaceutical treatments and this represents a clinically unmet need. Many forms of hydrocephalus involve dysregulation in water and electrolyte homeostasis, making this an attractive, druggable target. Methods In vitro, a combination of electrophysiological and fluid flux assays was used to elucidate secretory transepithelial electrolyte and fluid flux in a human cell culture model of the choroid plexus epithelium and to determine the involvement of serum-, glucocorticoid-induced kinase 1 (SGK1). In vivo, MRI studies were performed in a genetic rat model of hydrocephalus to determine effects of inhibition of SGK1 with a novel inhibitor, SI113. Results In the cultured cell line, SI113 reduced secretory transepithelial electrolyte and fluid flux. In vivo, SI113 blocks the development of hydrocephalus with no effect on ventricular size of wild-type animals and no overt toxic effects. Mechanistically, the development of hydrocephalus in the rat model involves an increase in activated, phosphorylated SGK1 with no change in the total amount of SGK1. SI113 inhibits phosphorylation with no changes in total SGK1 levels in the choroid plexus epithelium. Conclusion These data provide a strong preclinical basis for the use of SGK1 inhibitors in the treatment of hydrocephalus
    corecore