1,978 research outputs found

    BiOnt: Deep Learning using Multiple Biomedical Ontologies for Relation Extraction

    Full text link
    Successful biomedical relation extraction can provide evidence to researchers and clinicians about possible unknown associations between biomedical entities, advancing the current knowledge we have about those entities and their inherent mechanisms. Most biomedical relation extraction systems do not resort to external sources of knowledge, such as domain-specific ontologies. However, using deep learning methods, along with biomedical ontologies, has been recently shown to effectively advance the biomedical relation extraction field. To perform relation extraction, our deep learning system, BiOnt, employs four types of biomedical ontologies, namely, the Gene Ontology, the Human Phenotype Ontology, the Human Disease Ontology, and the Chemical Entities of Biological Interest, regarding gene-products, phenotypes, diseases, and chemical compounds, respectively. We tested our system with three data sets that represent three different types of relations of biomedical entities. BiOnt achieved, in F-score, an improvement of 4.93 percentage points for drug-drug interactions (DDI corpus), 4.99 percentage points for phenotype-gene relations (PGR corpus), and 2.21 percentage points for chemical-induced disease relations (BC5CDR corpus), relatively to the state-of-the-art. The code supporting this system is available at https://github.com/lasigeBioTM/BiOnt.Comment: ECIR 202

    Teleology and Realism in Leibniz's Philosophy of Science

    Get PDF
    This paper argues for an interpretation of Leibniz’s claim that physics requires both mechanical and teleological principles as a view regarding the interpretation of physical theories. Granting that Leibniz’s fundamental ontology remains non-physical, or mentalistic, it argues that teleological principles nevertheless ground a realist commitment about mechanical descriptions of phenomena. The empirical results of the new sciences, according to Leibniz, have genuine truth conditions: there is a fact of the matter about the regularities observed in experience. Taking this stance, however, requires bringing non-empirical reasons to bear upon mechanical causal claims. This paper first evaluates extant interpretations of Leibniz’s thesis that there are two realms in physics as describing parallel, self-sufficient sets of laws. It then examines Leibniz’s use of teleological principles to interpret scientific results in the context of his interventions in debates in seventeenth-century kinematic theory, and in the teaching of Copernicanism. Leibniz’s use of the principle of continuity and the principle of simplicity, for instance, reveal an underlying commitment to the truth-aptness, or approximate truth-aptness, of the new natural sciences. The paper concludes with a brief remark on the relation between metaphysics, theology, and physics in Leibniz

    Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    Get PDF
    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented
    corecore