308 research outputs found
Asteroseismology of the planet-hosting star mu Arae. II. Seismic analysis
As most exoplanets host stars, HD 160691 (alias mu Ara) presents a
metallicity excess in its spectrum compared to stars without detected planets.
This excess may be primordial, in which case the star would be completely
overmetallic, or it may be due to accretion in the early phases of planetary
formation, in which case it would be overmetallic only in its outer layers. As
discussed in a previous paper (Bazot and Vauclair 2004), seismology can help
choosing between the two scenarios. This star was observed during eight nights
with the spectrograph HARPS at La Silla Observatory. Forty three p-modes have
been identified (Bouchy et al. 2005). In the present paper, we discuss the
modelisation of this star. We computed stellar models iterated to present the
same observable parameters (luminosity, effective temperature, outer chemical
composition) while the internal structure was different according to the two
extreme assumptions : original overmetallicity or accretion. We show that in
any case the seismic constraints lead to models in complete agreement with the
external parameters deduced from spectroscopy and from the Hipparcos parallax
(L and Teff). We discuss the tests which may lead to a choice between the two
typical scenarios. We show that the ``small separation'' seem to give a better
fit for the accretion case than for the overmetallic case, but in spite of the
very good data the uncertainties are still too large to conclude. We discuss
the observations which would be needed to go further and solve this question.Comment: 16 pages, 8 figures, accepted in A&
Asteroseismology of exoplanets host stars: the special case of Horologii (HD17051)
{This paper presents detailed analysis and modelisation of the star HD17051
(alias Hor), which appears as a specially interesting case among
exoplanet host stars. As most of these stars, Hor presents a
metallicity excess which has been measured by various observers who give
different results, ranging from [Fe/H] = 0.11 to 0.26, associated with
different atmospheric parameters. Meanwhile the luminosity of the star may be
determined owing to Hipparcos parallax. Although in the southern hemisphere,
this star belongs to the Hyades stream and its external parameters show that it
could even be one of the Hyades stars ejected during cluster formation. The aim
of this work was to gather and analyse our present knowledge on this star and
to prepare seismic tests for future observations with the HARPS spectrometer
(planned for November 2006).} {We have computed evolutionary tracks with
various metallicities, in the two frameworks of primordial overmetallicity and
accretion. We have concentrated on models inside the error boxes given by the
various observers in the log g - log T diagram. We then computed the
adiabatic oscillation frequencies of these models to prepare future
observations.} {The detailed analysis of Hor presented in this paper
already allowed to constrain its external parameters, mass and age. Some values
given in the literature could be rejected as inconsistent with the overall
analysis. We found that a model computed with the Hyades parameters (age,
metallicity) was clearly acceptable, but other ones were possible too. We are
confident that observations with HARPS will allow for a clear conclusion about
this star and that it will bring important new light on the physics of
exoplanet host stars.}Comment: to be published in Astronomy and Astrophysic
The CoRoT primary target HD 52265: models and seismic tests
HD 52265 is the only known exoplanet-host star selected as a main target for
the seismology programme of the CoRoT satellite. As such, it will be observed
continuously during five months, which is of particular interest in the
framework of planetary systems studies. This star was misclassified as a giant
in the Bright Star Catalog, while it is more probably on the main-sequence or
at the beginning of the subgiant branch. We performed an extensive analysis of
this star, showing how asteroseismology may lead to a precise determination of
its external parameters and internal structure. We first reviewed the
observational constraints on the metallicity, the gravity and the effective
temperature derived from the spectroscopic observations of HD 52265. We also
derived its luminosity using the Hipparcos parallax. We computed the
evolutionary tracks for models of various metallicities which cross the
relevant observational error boxes in the gravity-effective temperature plane.
We selected eight different stellar models which satisfy the observational
constraints, computed their p-modes frequencies and analysed specific seismic
tests. The possible models for HD 52265, which satisfy the constraints derived
from the spectroscopic observations, are different in both their external and
internal parameters. They lie either on the main sequence or at the beginning
of the subgiant branch. The differences in the models lead to quite different
properties of their oscillation frequencies. We give evidences of an
interesting specific behaviour of these frequencies in case of helium-rich
cores: the ``small separations'' may become negative and give constraints on
the size of the core. We expect that the observations of this star by the CoRoT
satellite wi ll allow choosing between these possible models.Comment: 11 pages, 7 figures, to be published in Astronomy and Astrophysic
Asteroseismic signatures of helium gradients in late F-type stars
Element diffusion is expected to occur in all kinds of stars : according to
the relative effect of gravitation and radiative acceleration, they can fall or
be pushed up in the atmospheres. Helium sinks in all cases, thereby creating a
gradient at the bottom of the convective zones. This can have important
consequences for the sound velocity, as has been proved in the sun with
helioseismology.
We investigate signatures of helium diffusion in late F-type stars by
asteroseismology.
Stellar models were computed with different physical inputs (with or without
element diffusion) and iterated in order to fit close-by evolutionary tracks
for each mass. The theoretical oscillation frequencies were computed and
compared for pairs of models along the tracks. Various asteroseismic tests
(large separations, small separations, second differences) were used and
studied for the comparisons.
The results show that element diffusion leads to changes in the frequencies
for masses larger than 1.2 Msun. In particular the helium gradient below the
convective zone should be detectable through the second differences.Comment: 8 pages, 11 figures, 2 tables Accepted for publication in Astronomy
and Astrophysics. The official date of acceptance is 03/05/200
A Bayesian approach to the modelling of alpha Cen A
Determining the physical characteristics of a star is an inverse problem
consisting in estimating the parameters of models for the stellar structure and
evolution, knowing certain observable quantities. We use a Bayesian approach to
solve this problem for alpha Cen A, which allows us to incorporate prior
information on the parameters to be estimated, in order to better constrain the
problem. Our strategy is based on the use of a Markov Chain Monte Carlo (MCMC)
algorithm to estimate the posterior probability densities of the stellar
parameters: mass, age, initial chemical composition,... We use the stellar
evolutionary code ASTEC to model the star. To constrain this model both seismic
and non-seismic observations were considered. Several different strategies were
tested to fit these values, either using two or five free parameters in ASTEC.
We are thus able to show evidence that MCMC methods become efficient with
respect to more classical grid-based strategies when the number of parameters
increases. The results of our MCMC algorithm allow us to derive estimates for
the stellar parameters and robust uncertainties thanks to the statistical
analysis of the posterior probability densities. We are also able to compute
odds for the presence of a convective core in alpha Cen A. When using
core-sensitive seismic observational constraints, these can raise above ~40%.
The comparison of results to previous studies also indicates that these seismic
constraints are of critical importance for our knowledge of the structure of
this star.Comment: 21 pages, 6 figures, to be published in MNRA
Asteroseismology of alpha Cen A. Evidence of rotational splitting
Asteroseismology provides a unique tool for studying stellar interiors.
Recently p modes have been detected on the bright solar-like star alpha Cen A
thanks to high-precision radial-velocity measurements. However a better
characterisation of these p modes is clearly needed to constrain theoretical
models. We observed alpha Cen A during five nights using the HARPS spectrograph
in order to improve our knowledge of the seismic properties of this star. We
performed high-precision radial-velocity sequences and computed the acoustic
spectrum of alpha Cen A. We identify 34 p modes with angular degree l=0-3 in
the frequency range 1.8-2.9 mHz and amplitude range 13-48 cm/s, in agreement
with previous seismic studies. We find an enhancement of the frequency scatter
with the angular degree l that indicates, considering the high inclination axis
of alpha Cen A, rotational splitting and explains the low values of previously
suggested mode lifetimes. We also derive new values for the small separations
that take the effect of rotational splitting into account . Our seismic study
of alpha Cen A leads to a list of now well identified p-mode frequencies and
shows the importance of taking the rotation into account in order to properly
characterise the p modes even in quite short campaigns.Comment: 10 pages, 9 figures. To be published in A&
Asteroseismic detection of latitudinal differential rotation in 13 Sun-like stars
The differentially rotating outer layers of stars are thought to play a role
in driving their magnetic activity, but the underlying mechanisms that generate
and sustain differential rotation are poorly understood. We report the
measurement of latitudinal differential rotation in the convection zones of 40
Sun-like stars using asteroseismology. For the most significant detections, the
stars' equators rotate approximately twice as fast as their mid-latitudes. The
latitudinal shear inferred from asteroseismology is much larger than
predictions from numerical simulations.Comment: 45 pages, 11 figures, 4 tables, published in Scienc
Estimating the p-mode frequencies of the solar twin 18 Sco
Solar twins have been a focus of attention for more than a decade, because
their structure is extremely close to that of the Sun. Today, thanks to
high-precision spectrometers, it is possible to use asteroseismology to probe
their interiors. Our goal is to use time series obtained from the HARPS
spectrometer to extract the oscillation frequencies of 18 Sco, the brightest
solar twin. We used the tools of spectral analysis to estimate these
quantities. We estimate 52 frequencies using an MCMC algorithm. After
examination of their probability densities and comparison with results from
direct MAP optimization, we obtain a minimal set of 21 reliable modes. The
identification of each pulsation mode is straightforwardly accomplished by
comparing to the well-established solar pulsation modes. We also derived some
basic seismic indicators using these values. These results offer a good basis
to start a detailed seismic analysis of 18 Sco using stellar models.Comment: 12 pages, 6 figures, to be published in A&
Epstein-Barr virus nuclear antigen 1 interacts with regulator of chromosome condensation 1 dynamically throughout the cell cycle
The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is a sequence-specific DNA binding protein which plays an essential role in viral episome replication and segregation, by recruiting the cellular complex of DNA replication onto the origin (oriP) and by tethering the viral DNA onto the mitotic chromosomes. Whereas the mechanisms of viral DNA replication are well documented, those involved in tethering EBNA1 to the cellular chromatin are far from being understood. Here, we have identified Regulator of Chromosome Condensation 1 (RCC1) as a novel cellular partner for EBNA1. RCC1 is the major nuclear guanine nucleotide exchange factor (RanGEF) for the small GTPase Ran enzyme. RCC1, associated with chromatin, is involved in the formation of RanGTP gradients critical for nucleo-cytoplasmic transport, mitotic spindle formation, and nuclear envelope reassembly following mitosis. Using several approaches, we have demonstrated a direct interaction between these two proteins and found that the EBNA1 domains responsible for EBNA1 tethering to the mitotic chromosomes are also involved in the interaction with RCC1. The use of an EBNA1 peptide array confirmed the interaction of RCC1 with these regions and also the importance of the N-terminal region of RCC1 in this interaction. Finally, using confocal microscopy and FRET analysis to follow the dynamics of interaction between the two proteins throughout the cell cycle, we have demonstrated that EBNA1 and RCC1 closely associate on the chromosomes during metaphase, suggesting an essential role for the interaction during this phase, perhaps in tethering EBNA1 to mitotic chromosomes
- âŠ