895 research outputs found

    Do ultrafast exciton-polaron decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells?

    Get PDF
    All-organic-based photovoltaic solar cells have attracted considerable attention because of their low-cost processing and short energy payback time. In such systems the primary dissociation of an optical excitation into a pair of photocarriers has been recently shown to be extremely rapid and efficient, but the physical reason for this remains unclear. Here, two-dimensional photocurrent excitation spectroscopy, a novel non-linear optical spectroscopy, is used to probe the ultrafast coherent decay of photoexcitations into charge-producing states in a polymer:fullerene based solar cell. The two-dimensional photocurrent spectra are interpreted by introducing a theoretical model for the description of the coupling of the electronic states of the system to an external environment and to the applied laser fields. The experimental data show no cross-peaks in the two-dimensional photocurrent spectra, as predicted by the model for coherence times between the exciton and the photocurrent producing states of 20\,fs or less

    Axisymmetric core collapse simulations using characteristic numerical relativity

    Get PDF
    We present results from axisymmetric stellar core collapse simulations in general relativity. Our hydrodynamics code has proved robust and accurate enough to allow for a detailed analysis of the global dynamics of the collapse. Contrary to traditional approaches based on the 3+1 formulation of the gravitational field equations, our framework uses a foliation based on a family of outgoing light cones, emanating from a regular center, and terminating at future null infinity. Such a coordinate system is well adapted to the study of interesting dynamical spacetimes in relativistic astrophysics such as stellar core collapse and neutron star formation. Perhaps most importantly this procedure allows for the unambiguous extraction of gravitational waves at future null infinity without any approximation, along with the commonly used quadrupole formalism for the gravitational wave extraction. Our results concerning the gravitational wave signals show noticeable disagreement when those are extracted by computing the Bondi news at future null infinity on the one hand and by using the quadrupole formula on the other hand. We have strong indication that for our setup the quadrupole formula on the null cone does not lead to physical gravitational wave signals. The Bondi gravitational wave signals extracted at infinity show typical oscillation frequencies of about 0.5 kHz.Comment: 17 pages, 18 figures, submitted to Phys. Rev.

    Studies of h/e Aharonov-Bohm Photovoltaic Oscillations in Mesoscopic Au Rings

    Full text link
    We have investigated a mesoscopic photovoltaic (PV) effect in micron-size Au rings in which a dc voltage Vdc is generated in response to microwave radiation. The effect is due to the lack of inversion symmetry in a disordered system. Aharonov-Bohm PV oscillations with flux period h/e have been observed at low microwave intensities for temperatures ranging from 1.4 to 13 K. For moderate microwave intensities the h/e PV oscillations are completely quenched providing evidence that the microwaves act to randomize the phase of the electrons. Studies of the temperature dependence of Vdc also provide evidence of the dephasing nature of the microwave field. A complete theoretical explanation of the observed behavior seems to require a theory for the PV effect in a ring geometry.Comment: 10 pages (RevTex twocolumn style), 8 figures-2 pages (one postscript file) To be published in Phys. Rev.

    Pulsar Recoil and Gravitational Radiation due to Asymmetrical Stellar Collapse and Explosion

    Get PDF
    New data imply that the average velocity of radio pulsars is large \cite{hla93}. Under the assumption that these data imply that a pulsar is born with an ``intrinsic'' kick, we investigate whether such kicks can be a consequence of asymmetrical stellar collapse and explosion. We calculate the gravitational wave (GW) signature of such asymmetries due to anisotropic neutrino radiation and mass motions. We predict that any recoils imparted to the neutron star at birth will result in a gravitational wave strain, hzzTT^{TT}_{zz}, that does not go to zero with time. Hence, there may be ``memory'' \cite{bt87} in the gravitational waveform from a protoneutron star that is correlated with its recoil and neutrino emissions.Comment: 13 Pages, APS REVTeX format, encapsulated postscript figures, uuencoded and compressed. Accepted for publication in Phys. Rev. Letter

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Gravitational Waves from Gravitational Collapse

    Get PDF
    Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state of the art numerical investigations of collapse include those that use progenitors with realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non--axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method

    Get PDF
    This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known e/he/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within ±1\pm 1% of the true values and the fractional energy resolution is [(58±3)/E+(2.5±0.3)[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E. The value of the e/he/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74±0.041.74\pm0.04 and agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM

    eHealth in Geriatric Rehabilitation: An International Survey of the Experiences and Needs of Healthcare Professionals.

    Get PDF
    While eHealth can help improve outcomes for older patients receiving geriatric rehabilitation, the implementation and integration of eHealth is often complex and time-consuming. To use eHealth effectively in geriatric rehabilitation, it is essential to understand the experiences and needs of healthcare professionals. In this international multicentre cross-sectional study, we used a web-based survey to explore the use, benefits, feasibility and usability of eHealth in geriatric rehabilitation settings, together with the needs of working healthcare professionals. Descriptive statistics were used to summarize quantitative findings. The survey was completed by 513 healthcare professionals from 16 countries. Over half had experience with eHealth, although very few (52 of 263 = 20%) integrated eHealth into daily practice. Important barriers to the use or implementation of eHealth included insufficient resources, lack of an organization-wide implementation strategy and lack of knowledge. Professionals felt that eHealth is more complex for patients than for themselves, and also expressed a need for reliable information concerning available eHealth interventions and their applications. While eHealth has clear benefits, important barriers hinder successful implementation and integration into healthcare. Tailored implementation strategies and reliable information on effective eHealth applications are needed to overcome these barriers
    • 

    corecore