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Ultrafast decoherence dynamics 
govern photocarrier generation 
efficiencies in polymer solar cells
Eleonora Vella1,*, Hao Li2,*, Pascal Grégoire1, Sachetan M. Tuladhar3, Michelle S. Vezie3, 
Sheridan Few3, Claudia M. Bazán1, Jenny Nelson3, Carlos Silva-Acuña1,3 & Eric R. Bittner1,2

All-organic-based photovoltaic solar cells have attracted considerable attention because of their low-
cost processing and short energy payback time. In such systems the primary dissociation of an optical 
excitation into a pair of photocarriers has been recently shown to be extremely rapid and efficient, 
but the physical reason for this remains unclear. Here, two-dimensional photocurrent excitation 
spectroscopy, a novel non-linear optical spectroscopy, is used to probe the ultrafast coherent decay 
of photoexcitations into charge-producing states in a polymer:fullerene based solar cell. The two-
dimensional photocurrent spectra are interpreted by introducing a theoretical model for the description 
of the coupling of the electronic states of the system to an external environment and to the applied 
laser fields. The experimental data show no cross-peaks in the twodimensional photocurrent spectra, as 
predicted by the model for coherence times between the exciton and the photocurrent producing states 
of 20 fs or less.

Advances in the fabrication of organic polymer-based photovoltaic (OPV) cells have led to power conversion 
efficiencies (PCE) in excess of 10% in certain polymer:fullerene devices, making them viable materials for 
light-harvesting devices1. However, the fundamental photophysical pathways that connect the absorption of light 
to the production of charge carriers remain elusive in spite of rigorous experimental and theoretical investigation. 
OPVs based on the so-called bulk heterojunction consist of blends of electron donor (usually a π-conjugated 
polymer) and electron acceptor (typically a fullerene derivative or a second polymer) materials.

The bottleneck that has attracted the attention of theorists and experimentalists alike is that the primary pho-
toexcitations are tightly bound intramolecular excitons with high-binding energy (≈ 500 meV). Subsequently, 
the lowest-energy intermolecular charge-transfer (CT) states that occur at the phase-boundary between donor 
and acceptor materials also have binding energies in the range of 300–400 meV2. The general paradigm for some 
time has been that the CT states are the primary precursors to photocarriers. However, in order to produce pho-
tocurrent, the electrons and holes produced by photoexcitation must separate far enough such that their binding 
energy could be small as compared to the thermal energy near ambient conditions.

Recent spectroscopic measurements on organic photovoltaic systems report that charged photoexcitations 
can be generated on ≤ 100-fs timescales3–11. Delocalization of the transferred electron amongst several fullerenes 
diminishes its Coulombic attraction to a hole localized in the polymer (donor) phase. Transient absorption exper-
iments by Gélinas et al., in which Stark-effect signatures in transient absorption spectra were analysed to probe 
the local electric field as charge separation proceeds, indicate that electrons and holes separate by ≈ 40 Å over the 
first 100 fs and evolve further on picosecond timescales to produce unbound charge pairs12. Model calculations 
based upon Fermi’s golden rule also indicate that such rapid time-scales are only consistent with a model of a 
highly-delocalised charge in the acceptor phase12. Concurrently, Provencher et al. demonstrated, via femtosecond 
stimluated Raman spectroscopic measurements, the emergence of clear polaronic vibrational signatures on sub-
100-fs on the polymer backbone, with very limited molecular reorganization or vibrational relaxation following 
the ultrafast step13. Such spectacularly and apparently universally rapid through-space charge transfer between 
excitons on the polymer backbone and acceptors across the heterojunction would be difficult to rationalize within 
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Marcus theory using a localised basis without invoking unphysical distance dependence of tunnelling rate con-
stants14. In addition, intramolecular electron-vibration interactions in organic conjugated polymers are known 
to be relatively strong and do contribute to the photophysical dynamics. Recent observations of quantum beating 
with a time-period of 23 fs in a prototypical polymer:fullerene OPV system suggest that C= C stretching modes 
of the polymer and the pinching mode of the fullerene are as important as the off-diagonal electronic transfer 
integral itself15, a scenario not unlike what occurs in photosynthetic light-harvesting systems16. Similarly, Song  
et al. demonstrated, by means of two-dimensional coherent spectroscopy, the role that such vibrational coherence 
plays in ultrafast charge generation processes in polymer:fullerene systems17. Such observations underscore the 
importance of coherent vibronic coupling between electronic and nuclear degrees of freedom in charge delocali-
zation and transfer in a noncovalently bound reference system18.

We recently proposed that quantum mechanical tunnelling processes brought about by environmental fluc-
tuations couple photoexcitations directly to photocurrent producing charge-transfer states on a sub 100-fs times-
cales19. Our heuristic model is supported by a recent numerically exact study of a model spin-boson system with 
separated diagonal and off-diagonal baths by Yao et al.20. This work indicates that there exists a critical parametric 
regime that produces neither localized nor delocalized states and is free of quantum decoherence, suggesting 
that the existence of such decoherence-free subspaces is critical to the formation of quantum coherent exchange 
between the exciton and the delocalised charge-separated (CS) states20,21.

In the present work, we exploit the superior detection sensitivity of ultrafast photocurrent probes22 to explore 
photocarrier generation dynamics by means of two-dimensional (2D) photocurrent excitation spectroscopy 
(2DPCE). This is a novel nonlinear optical spectroscopy in which the two-dimensional excitation correlation 
spectrum is measured as a function of time after initial excitation with a femtosecond pulse sequence via photo-
current23,24. In general, 2D electronic spectroscopies permit identification of homogeneous and inhomogeneous 
spectral lineshape contributions, and because they are nonlinear optical techniques, they can reveal the existence 
of couplings between distinct excited states through the presence of cross peaks (off-diagonal signals) in the 2D 
correlation spectrum. Because of these unique advantages over linear techniques, 2DPCE is extremely valuable in 
the investigation of the photocharge generation dynamics in materials in which photocarriers are not produced 
directly by inter-band transitions as in bulk semiconductors, but in which precursors to photocarrier pairs, such 
as excitons in molecular semiconductors, are the primary photoexcitations. We use 2DPCE in order to explore 
the ultrafast decoherence dynamics between mixed exciton and delocalised polaron states that we proposed to 
be photocarrier precursors in ref. 19. We begin with a brief overview of a theoretical model describing salient 
electronic states of this system and their coupling to an external environment and to the applied laser fields. This 
will serve as an important touchstone in interpreting our experimental data. We then describe the results of our 
2DPCE experiments on a working organic polymer based solar cell based upon a polymer:fullerene blend.

Results
Theoretical model. We begin by developing a model for the salient electronic states of an organic hetero-
junction system as sketched in Fig. 1a, in which we assume that the primary photoexcitation (exciton) is pro-
duced by the absorption of a photon from the electronic ground state of the system and can decay into either a 
charge-transfer (CT) state pinned to the heterojunction interface, or into delocalised charge-separated (CS), or 
polaron pair, states19. We also assume that population in the CS states is ultimately responsible for any photocur-
rent produced by the actual device. Consequently, in the limit of no other channels for carrier loss, photocurrent 
is at least proportional to the net population transferred to the CS states. Moreover, both spectroscopic meas-
urements and quantum chemical studies place the CT state energetically well below the threshold for polaron 
formation such that these CT states cannot decay into CS states via thermally activated processes2.

We discuss here the results of a series of quantum chemical calculations we performed to verify and sup-
port the various parameters used in the phenomenological 3-state model used for computing the 2D spectra. To 
model any particular physical system, we need information about the energy and nature of the excited states at 
the donor:acceptor interface where charge separation occurs. The challenge of calculating the properties of such 
states is complicated by the wide variety of interfacial molecular packing arrangements and by the size of the 
interfacial region. This remains an active area of research25. In the present case, we use the simplest possible model 
of the donor:acceptor interface, a complex consisting of an oligomer of the donor polymer and a single fullerene 
derivative, separated by an edge to edge distance of 3.5 Angstrom, and calculate the lowest excited states in vac-
uum using time-dependent density functional theory (TD-DFT) with the hybrid B3LYP/6–31G*  functional. We 
classify the resulting states as excitonic, charge-transfer (CT) or mixed according to what fraction of an electron 

Figure 1. (a) Schematic of the relevant energy levels in our model along with their couplings. (b–e) Double-
sided Feynman diagrams contributing to the 4th order population. Incoming and outgoing arrows indicate 
interactions with the laser fields along with their phase. Q̂ is the final projection onto the outgoing polaron states 
that contribute to the photocurrent.
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charge lies on the fullerene, and we study the dependence of the energy and type of these states on the relative 
position of oligomer and fullerene molecule. Our calculation method is described in detail in ref. 26.

For a donor:acceptor pair where the molecules’ HOMO and LUMO energies are staggered, such calculations 
typically reveal at least one CT state lying at an energy below the lowest exciton state of either donor or accep-
tor. This qualitative finding agrees with experiment, where optically absorbing charge transfer states have been 
observed in many polymer: fullerene combinations using high sensitivity absorption27,28, photocurrent spectros-
copy29, photoluminescence30,31 and electroluminescence32. The TDDFT approach, although simple, has worked 
remarkably well in reproducing the observed CT state behaviour; it was shown previously by Few et al. to repro-
duce the observed trend in lowest excitation energies (determined through electroluminescence) with the chem-
ical structure of donor and acceptor constituent materials. In a detailed study, TD-DFT with B3LYP was found 
to agree with experimental data as well as the more expensive GW many body theory33. We acknowledge that 
TD-DFT will have limitations, and that other approaches to CT state calculation are being developed using higher 
levels of theory on molecular pairs34,35, and with a more detailed description of the role of surrounding mole-
cules in determining energetics of interfacial states through polarisation36,37 and electronic delocalisation38–41. 
However, for the purpose of the present paper, the method is used only to indicate the type of CT states that will 
be present in our model system.

Here, we focus on the donor: acceptor system that we study experimentally, the polymer poly(N-9″ - 
hepta-decanyl-2,7-carbazole-alt-5,5-(4′ ,7′ -di-2-thienyl-2′ ,1′ ,3′ -benzothiadiazole)) (PCDTBT) combined with the 
fullerene derivative phenyl C-61 butyric acid methyl ester (PCBM). We model the polymer as a trimer in its opti-
mised geometry and study the excited state spectrum for different relative positions of fullerene and oligomer. For 
each fullerene alignment, we calculate three CT states (more then 0.9 e transferred from oligomer to fullerene) at 
excitation energies below that of the first oligomer singlet, and a number of “mixed states” (between 0.1 e and 0.9 e 
transferred from oligomer to fullerene) at energies close to that of oligomer singlet transitions. When the PCBM 
molecule is aligned with the benzothiadiazole (BT) unit of the oligomer, we calculate an additional CT state with 
an excitation energy ≈ 150 meV above that of the oligomer singlet. For each CT state we calculate the Coulomb 
interaction due to partial charges on each molecule, UB, which gives an indication of the energy required to gen-
erate a free-charge pair. (Note that dielectric screening is not taken into account when calculating this value, and 
it should be used as a guide to relative binding of states, rather than as an absolute value.)

Figure 2 illustrates the charge redistribution for two of the possible excitations of an oligomer:fullerene pair in 
the configuration when the fullerene is located 3.5 Å above the central benzothiadiazole unit. In this configura-
tion, we calculate an additional CT state with an excitation energy ≈ 150 meV above that of the oligomer singlet 
as well as a CT state that lies 50 meV below. The two states have a different degree of charge transfer character and 
Coulomb binding between electron and hole. We also find that the higher energy CT state has a lower unscreened 
electron/hole binding (UB ≈  0.6 eV) than the lower energy CT states (UB ≈  1.2 eV). A similar trend in decreas-
ing Coulombic binding energy with increasing CT state energy has been reported in a variety of other donor: 
acceptor blends26,42. Figure 3 shows the spectrum of excited states for the donor trimer (3CDTBT), the PCBM 
molecule, and the 3CDTBT:PCBM molecule pair with the fullerene located above the benzothiadiazole unit 
(BT), the carbazole unit (CZ) and the thiophene unit (T), calculated as described in ref. 26. The configuration of 

Figure 2. Redistribution of charge, excitation energy, and unscreened Coulomb binding energy for two 
excitations of a CDTBT oligomer: PCBM molecule pair. Isosurfaces show change in charge distribution 
between ground state and excited states (electron density moves from red to blue regions). We stress that these 
are just exemplary structures showing one possible configuration of the pair, and that the states shown are only 
two out of the ensemble, selected to show the typical energy and nature (degree of CT) of excited state of the 
donor:acceptor complex. They are not exhaustive.
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oligomer and fullerene were chosen to be representative of just one of the arrangements likely to be found in the 
solid film. The resulting states are representative of those likely to be found for this material system, but not exclu-
sive. Alternative approaches43,44 may lead to different optimised pair conformations and state energies, but these 
variations will still be minor compared to the variations expected due to disorder in the film, and to variation in 
the position of the fullerene relative to the polymer backbone (as shown in Fig. 3).

The quantum chemical results show clearly that the excitonic state is bracketed by a intermolecular 
charge-transfer state lying ≈ 50 meV below with an unscreened electron/hole binding energy of 1.2 eV and an 
intermolecular charge-separated state lying at 150 meV above with a unscreened electron/hole binding energy 
of 0.6 eV. It should be pointed out that molecular calculations such as these do not take into account neighboring 
molecular units that would otherwise be present in the physical system. The presence of neighboring molecules 
allows the electron and hole to further delocalise over multiple units thereby both weakening the net Coulombic 
interaction between the electron and hole and providing an increased density of charge-separated states that the 
exciton can decay into.

To cast our quantum-dynamical model involving excitations in Fig. 1a into a succinct theoretical framework, 
we consider the time-evolution of the electronic states of the model system as an open quantum system under 
influence of a series of co-linear phase-modulated laser pulses. In our calculations, an operator A(t) correspond-
ing to arbitrary quantum observable can be propagated according to the Lindblad master equation

�
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in which HS is the unperturbed Hamiltonian of the electronic system in its second quantization form
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where †an  and an are fermion operators that create and annihilate excitation quanta in state n, and εn and gij are site 
energies and tunnelling constants, respectively. The energies and couplings are chosen to correspond to the rele-
vant states in the physical system. We explicitly include the electronic ground state |g〉 , which is coupled via the 
transition dipole μge to a single excitonic state, |e〉 , which in turn is coupled to a dark charge transfer state |ct〉  with 
electronic coupling gxc, and a single charge separated (polaron) state |p〉  with coupling gxp. We assume that 

Figure 3. Calculated excitation spectrum for a 3CDTBT oligomer and a PCBM molecule, each alone, and 
as a molecule pair. Excitations are coloured according to degree of charge transfer exhibited. Single molecule 
excitations (CT ≤  0.10 e) are blue, complete charge transfer excitations (CT ≥  0.90 e) are red, and mixed 
excitations (0.10 e <  CT <  0.90 e) are green.
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photocurrent arises from the decay of population in state |p〉  into a continuum of bulk polaron states on a times-
cale much longer than any other timescale in our system. Figure 1a gives schematic of the relative placement of 
the various states explicitly considered in our model. We also assume that the internal electronic dynamics are 
coupled to a dissipative environment that modulates the electronic energies as well as electronic transfer integrals 
gxc and gxp. The Lindblad terms in the 3-state model provide a succinct avenue for incorporating the local vibronic 
environment–including effects due to nearby molecular units–directly into the light-matter quantum dynamics 
that give rise to the 2DPCE spectra.

We introduce the interactions with the external environment using the Lindblad approach, following a suita-
ble set of assumptions including that at the initial time, the system and environment are uncorrelated and that the 
environment is large enough so that its memory time is very short. This latter assumption is critical since it allows 
the use of a Markovian approach. The Lindblad approach is commonly used in quantum optics where both of 
these assumptions are easily met. For the case at hand, in which the environment consists of the electronic polar-
izibility and vibrational (phonon) response of the molecular surroundings, the Markov assumption may be diffi-
cult to justify but nonetheless provides a useful starting point for describing the dynamics of our system. Using 
Lindblad master equation Eq. 1, the time evolution of an operator in the system subspace can be determined with 
the Lindblad dissipation term D given by

 ∑γ=
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where γk are the relaxation amplitudes and Lk are the Lindblad operators that characterize the effect of the envi-
ronment on the system. Decoherence and relaxation effects on the electronic degrees of freedom can be attributed 
to the oscillation of energy levels and the modulation of the transfer integral via Lindblad operators = †L a ak n n 
and = †L a ak i j (i≠ j). Primary analysis45,46 based on a two-level system indicates that population relaxation time 
scale τ−1 =  γ is merely dominated by the environment facilitating state transition in the Hamiltonian (the 
so-called off-diagonal coupling), whereas the decoherence process is determined by the bath modulation on both 
energy levels and tunnelling terms, with the former being referred to the mechanism of diagonal coupling. Using 
this approach, we can effectively model both relaxation and decoherence within the context of a single theoretical 
framework, taking the system-environment couplings as phenomenological variables. For example, the timescale 
for decoherence between two electronic states is ultimately set by the fluctuations in the couplings between the 
states viz.

τ δ= 〈 〉− V t( ) /d
1 2

where δV(t) is a random variable with 〈 δV(t)〉  =  0 stemming from environmental fluctuations (e.g. phonons) 
described by a single spectral density S(ω) of the environment.

In the 2DPCE experiment, it is natural to assume that the total photocurrent signal is proportional to the 
population of the polaron state |p〉 

ρ ρ∝ = QTr[ ], (4)pp

in which Q =  |p〉  〈 p| is the projection operator that we take to be the precursor for any photocurrent produced by 
the pulse sequence. We take the light-matter coupling as a weak perturbation and expand the time-dependent 
density operator in the powers of the applied laser field as
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where E(r, t) is the electric field component of the lasers. Note that the time-ordered expansion is in terms of the 
intervals between field-matter interactions denoted by t t t, , , n1 2 , with t1 being the earliest and tn being the last. 
The nth order polaron population susceptibility is
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where μ(t) is the electronic dipole operator evolved in time using the Lindblad master equation described above. 
Comparing this to conventional methods for nonlinear spectroscopy, such as a four-wave-mixing experiment 
ending in the ground state, the outgoing signal of this photocurrent spectroscopy is governed by the polaron 
population47. It is also important to note that only the even order susceptibilities are nontrivial according to the 
electric field symmetry. We compute the fourth order susceptibility of the polaron population which is the lowest 
order to obtain 2D spectrum. Consequently, the simplest nonlinear photocurrent spectroscopy corresponds to 
the 4th order susceptibility technically involving 8 correlation functions instead of four in the 3rd order spec-
troscopy. Regarding the scheme of phase-modulation detection47, a detailed analysis of the susceptibility based 
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our model indicates four survived contributions that can be categorized as rephasing φRP =  φ4 −  φ3 −  φ2 +  φ1 and 
non-rephasing φNRP =  φ4 −  φ3 +  φ2 −  φ1 signals, with respect to the phases of the four collinear laser pulses, as 
depicted by the double-side Feynman diagrams in Fig. 1, corresponding to two stimulated emission (Fig. 1(b,c)) 
and two ground state bleach (Fig. 1(d,e)) pathways. The rephasing signal in the phase-modulation 2DPCE spec-
troscopy is analogous to the photon echo spectroscopy under the four-wave mixing scheme. Note that excited 
state absorption are ruled out in such single excitation manifold. The final signal results from interference 
between each of these possible pathways. If, in fact, there is a direct quantum mechanical link between the initial 
excitation and any photocurrent precursor state, such links should be revealed by a cross-peak in the 2DPCE 
signal. However, whether or not such cross-peaks can be resolved depends upon the rate of decoherence between 
the exciton and the precursor state.

It is worth underlining that this theoretical model for the evaluation of the 2DPCE spectra does not include 
post-excitation processes. This circumstance is anyway reasonable in the frame of our experimental settings. As 
it will be described in more detail in the following section, in this work all the 2D spectra were measured under a 
≈ 0.7 V bias, which is the optimal operating condition for the photo cell.

In Fig. 4 we present the results of our quantum simulations of the 2DPCE signals produced by our model 
parametrized to describe the PCDTBT:PCBM system. We take the decoherence time as a free parameter and 
compare results at increasing coherence times between the exciton and the polaron states. If τd =  21 fs, the 2DPCE 
response is featureless (Fig. 4(a,b)). As the coherence time increases, one should expect to see that cross-peaks 
begin to emerge between the exciton and the polaron states (here at 2.3 eV). Indeed, taking this τ  30fsd  reveals 
such cross-peaks (Fig. 4(c,d)). In fact, when the decoherence time is taken to be very large (Fig. 4(e,f)), the indi-
vidual diagonal and off-diagonal spectral components become very well resolved.

2D photocurrent excitation spectroscopy. We carried out 2DPCE spectroscopy on a solar cell based on 
PCDTBT:PCBM blend. The molecular structures of PCDTBT and PCBM are shown on Fig. 5(a) and the device 
structure is described in the Methods section. This is a benchmark polymer:fullerene system which has been 
shown to yield solar-power conversion efficiencies as high as 7%48,49. Figure 5(b) presents the linear photocurrent 
excitation spectrum of such solar cell. 2DPCE measurements were performed exciting the solar cell with a 
sequence of four collinear ultrafast laser pulses. Figure 5(c) reports the current density as a function of external 
bias (JV curve) of the cell under both femtosecond-laser and solar (AM1.5 G) illumination. The agreement 
between the JV curve measured under fs-pulse excitation and the one measured under solar illumination is very 
good, with only one point of the fs-excited JV characteristic not perfectly overlapping the solar simulator excited 
one. Such small differences are likely due to differences in the spectral range of the femtosecond laser excitation 
source, for example. Nevertheless, it is worth noting that the open-circuit voltage is very similar in both measure-
ments. This comparison, then, allows us to conclude that the carrier densities probed by the experiment are 
comparable to those of the operating solar cell. Working under such photoexcitation densities, Fig. 6 presents the 
2DPCE spectra of the photovoltaic cell at a population waiting time of t32 =  0 fs. (see right-most, bottom inset of 
Fig. 6 for a definition of the inter-pulse delays). All spectra were measured keeping the cell under a bias voltage of 
≈ 0.7 V. Shown are the real and imaginary parts of the rephasing (Fig. 6(a,b)), nonrephasing (Fig. 6(c,d)) spectra, 
and the total correlation function produced by the combination of these (Fig. 6(e,f)). As evident in Fig. 6(g), the 

Figure 4. Theoretical 2DPCE total correlation functions for the model system with increasing decoherence 
times (τd = ħ/γ). The top row shows the real part of the response, while the bottom row shows the imaginary 
part.
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laser spectrum covers the anticipated spectral range for the salient electronic states of this system, namely exciton 
and delocalised polarons, although it is narrow compared to the photocurrent excitation spectrum. In such con-
ditions the bandwidth of the total correlation function is limited by the laser spectrum (see Fig. SI2). The total 

Figure 5. (a) Structure of PCDTBT (left) and PCBM (right). (b) Photocurrent excitation spectrum of the 
PCDTBT:PCBM solar cell under investigation. (c) Current-voltage response of same cell under AM1.5 G solar 
illumination (right-axis) and under ultrafast laser illumination (left-axis). The uncertainty in the photocurrent 
density measured by exciting with the femtosecond pulse train is less than 10%.

Figure 6. Two dimensional coherent photocurrent excitation (2DPCE) spectra at a population waiting 
time t32 = 0 fs measured under a bias voltage of ≈0.7 V. (a,b) Real and imaginary components of the rephasing 
(RP) signal. (c,d) Real and imaginary components of the non-rephasing (NRP) signal. (e,f) Real and imaginary 
components of the total correlation function (TCF). (g) Laser spectrum and photocurrent excitation spectra 
over the same range and schematic of the experimental pulse sequence.
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2DPCE spectra in Fig. 6(e,f) reveal very little structure of the electronic states of the system. The main peak along 
the diagonal at 2.1 eV corresponds to the vertical exciton and one expects to see cross-peaks along the 
anti-diagonal corresponding to couplings to other electronic states coupled to the exciton. For the case at hand, 
the other electronic states of the system are optically dark or at best carry little oscillator strength to the ground 
state. As shown above by our quantum-dynamical modeling and Fig. 4, the fact that we see little trace of 
cross-peaks associated with these states but do see signal is indicative of very rapid electronic decoherence if 
resonance tunnelling from excitons to delocalised polarons brought about by bath-induced off-diagonal coupling 
as suggested in ref. 19 is the operative mechanism on these early time-scales. From these measurements and 
under the assumptions of our theoretical modelling, we conclude that the decoherence time between exciton and 
polaron photocarrier precursor states must be τ 20fsd . Moreover, no clear evolution of the 2DPCE spectra was 
observed for population times ranging between 0 fs and 180 fs (see Fig. SI 1).

In order to explore the decoherence rate inferred above, we also seek to measure the optical dephasing time 
which can be measured from the anti-diagonal amplitude of the rephasing spectrum at population waiting time 
t32 =  0 fs (Fig. 6(a,b))50. Figure 7 shows such an antidiagonal cut, and the solid line is a fit to a Lorentzian function 
with full-width-at-half-maximum of 100 ±  1 meV, which represents the homogeneous linewidth of the main exci-
tonic transition of PCDTBT over the spectral region covered by the ultrafast laser bandwidth. This implies a pure 
dephasing time = Γ =⁎T / 13fs2  , where 2Γ  is the homogeneous linewidth. This dephasing time is consistent 
with the off-diagonal (exciton-polaron) decoherence time inferred above, which we rationalise with the fact that 
the two quantum dissipation processes are governed by the coupling of the system to the vibronic bath, and are 
subject to similar spectral density.

Discussion
We present here a combined theoretical and experimental investigation into the origins of prompt photocarrier 
production in a working organic photovoltaic system. The correlation between the observed photocurrent with 
a sequence of ultrashort laser pulses supports our hypothesis that that off-diagonal couplings modulated by fluc-
tuations within the bath enable resonant tunneling between an optically prepared exciton and a density of delo-
calized polaron states. In general any signal in the photocurrent is indicative of a direct tunneling process from 
exciton states close to the donor/acceptor interface to the continuum of CS states. In our experiment excitons 
produced far from the interface are removed from the signal by the pulse sequence and, even though they may 
give rise to a back-ground current, they would not contribute to the 4-th order correlation function, which the 
2DPCE spectra are a measure of. Finally, it needs to be noted that all stray charges lingering from other processes 
and previous excitations are pushed out of the cell by the applied voltage bias.

In a recent paper Bässler and Köhler51 reviewed relevant experimental approaches and concepts proposed to 
describe the charge separation process in donor-acceptor organic solar cells, enforcing the notion that this occurs 
through a charge separated state that is a vibrationally cold charge transfer state. It is worth noting that our results 
are not at variance with those conclusions in that our experiments and theoretical modeling aimed to probe the 
sub-100 fs step of the charge photogeneration, whereas the dissociation process addressed by Bässler and Köhler 
occurs over time-scales spanning from 100 fs to ns.

The model and experimental results here reported corroborate and tie together a number of related recent 
investigations into the nature of the coupling between excitons and polarons in OPV systems19,40,52,53. In the 
present work the dephasing rate was introduced as a phenomenological parameter to compare the the experi-
mental spectra computed ones. The dephasing rates can of course be related to energy gap fluctuations. In fact the 

Figure 7. Anti-diagonal slice of the 2DPCE rephasing signal. The solid line is a fit to a Lorentzian function in 
which the optical dephasing rate Γ  characterizes the homogeneous linewidth.
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phenomenological rates that produce the best match to the observations are consistent with the gap fluctuations 
Bittner and Kelley52 reported recently. Specifically, in ref. 52, mixed quantum/classical methods were used to 
sample the density of excited states produced by a polymer:fullerene contact pair undergoing molecular dynamics 
and it was found that on a very fast time-scale purely excitonic states rapidly mix with charge separated ones even 
after the initial excitation has thermalized with respect to the molecular motions. In ref. 40 the authors used ab 
initio quantum chemical methods to parametrize a fully quantum model of a polymer:fullerene heterojunction 
system. Quantum dynamics simulations on this system indicate that delocalization of charge in the fullerene 
phase reduces the Coulomb binding potential of the interfacial charge-transfer states and that vibrational excita-
tions provide the necessary energy to facilitate charge separation. Along similar veins, efficient charge mobility 
can be attributed to the high degree of packing efficiency in the fullerene phase53. Here, resonant coupling of 
photogenerated singlet excitons to a high-energy manifold of fullerene electronic states enables efficient charge 
generation, bypassing localized charge-transfer states. While the theoretical approaches taken by each of these 
are very different, the underlying picture that emerges is excitons decay directly into states capable of producing 
photocurrent and that the time-scale for this process is ultimately governed by the spectral density of the environ-
ment that gives rise to energy level fluctuations. These same fluctuations also govern the optical dephasing time 
of the exciton and set the time-scale over which perturbative (i.e. Fermi golden-rule) descriptions of the decay 
are applicable.

Overall, the central results of the present work can be summarized as follows. Firstly, the detected photocur-
rent in the 2DPCE spectra is indicative of a direct tunneling process from an exciton state to any current-producing 
charge-separated state. Secondly, the absence of clear cross-peaks associated to other electronic state coupled to 
the exciton state and the absence of any evolution of the 2DPCE line shape for coherence times up to 200 fs can be 
interpreted, in the frame of our theoretical model, as evidence that the decoherence time between exciton and 
polaron photocarrier precursor states must be 20fs. This is a negative result in the sense that we interpret lack of 
structure in the early-time 2DPCE spectrum as consistent with the ultrafast decoherence process. This observa-
tions is, nevertheless, significant in our view.

Methods
Solar cell preparation and characterization. The devices examined in the present work are based on 
blends of poly(N-90-heptadecanyl-2,7-carbazole-alt-5,5-(40,70- di-2-thienyl-20,10,30 -benzothiadiazole)) as 
electron donor and of the fullerene derivative [6,6]-phenyl-C60 butyric acid methyl ester as electron acceptor 
(PCDTBT:PCBM). The PV device structure is ITO/PEDOT:PSS/PCDTBT:PCBM/Ca/Al. PEDOT:PSS was 
spun onto a cleaned ITO coated glass substrate to form a film of 35 nm thickness. The active layer of thickness 
80–90 nm was then spin cast on top of PEDOT:PSS layer from a blend of PCDTBT:PCBM (1:2) in chlorobenzene 
solvent with a concentration of 25 mg/ml. The top electrode calcium (≈ 20 nm) and aluminium (≈ 100 nm) was 
then subsequently deposited by thermal evaporation. Current density/voltage (J/V) characteristics of the devices 
were measured using a Keithley 236 Source Measure Unit. Solar cell performance was measured by using a xenon 
lamp with AM1.5 G filters and 100 mW/cm−2 illumination solar simulator (Oriel Instruments). In the photocur-
rent excitation measurement, the sample was illuminated at normal incidence by using a modulated laser light 
as an excitation source, the induced photocurrent was collected by a lock-in amplifier (SR830) referenced to the 
chopping frequency.

2DPCE Apparatus. Our 2DPCE setup, shown in Fig. 8, is based on the phase-modulation and phase-sensitive  
detection system conceived by Marcus and co-workers24,54. It consists of a collinear four-pulse sequence (see 
bottom-right panel of Fig. 6) that is generated by means of two Mach-Zehnder interferometers nested in an outer 

Figure 8. (a) Schematic diagram of the 2DPCE setup involving a Mach-Zehnder interferometer with inner 
Mach-Zehnder interferometers nested in each arm of the outer one. NOPA is noncollinear parametric 
amplifier, BS is beamsplitter, AOM is acousto-optic modulator, MONO is monochromator, tij is the temporal 
delay between pulse i and j, and REF is an optically generated reference signal waveform with frequency Ωij. 
(b) Schematic diagram of the phase-sensitive detection setup involving amplitude modulation and lock-in 
amplification.
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Mach-Zehnder interferometer. The output of a non-collinear optical parametric amplifier (Light Conversion 
Orpheus-N-3H pumped by a Pharos regenerative amplifier operating at a repetition rate of 600 kHz) is 
pre-compressed by an adaptive 4f pulse shaper (Biophotonics Solution FemtoJock-P) in order to be < 20 fs at 
the sample position. This output is split into two by means of a 50% beam splitter, and one arm is delayed with 
respect to the other by means of an optical delay time defining the delay variable t32, and then recombined into a 
collinear combination of the pulse trains by an identical beam splitter. Each of the two arms is then split into two 
sub-arms by identical 50% beam splitters and then recombined to generate the four-pulse sequence. The twin 
internal interferometers thus each generate two of the phase-locked pulses of the sequence. In order to ensure 
the phase locking condition, an acousto-optic Bragg cell is placed in each arm of the twin interferometers. The 
acousto-optic modulation imposes on each pulse of the sequence a frequency shift equal to the unique modula-
tion frequency Ωi (i =  1, 2, 3 and 4), close to 200 MHz. These frequency changes, small compared to the optical 
frequency, produce a shift in the temporal phase of each pulse which oscillates at the corresponding frequency 
Ωi. Each laser pulse is phase-shifted with respect to the previous shot, thus giving rise to two collinear trains of 
phase-modulated pulse pairs. When incident on a photodetector, the interfering excitation pulses produce a 
population signal oscillating at Ω21 =  Ω2 −  Ω1 and Ω43 =  Ω4 −  Ω3. The exact Ωi values are chosen so that Ω21 and 
Ω43 are in the kHz range (at 5 and 8 kHz respectively, in the present case). This phase modulation scheme allows 
one to isolate the fourth-order contribution to the photocurrent signal by means of a lock-in amplifier (Zurich 
Instruments HF2LI equipped with multi-frequency and AM/FM modulation modules), which is then used to 
construct the 2D maps. Reference waveforms of frequency Ω43 −  Ω21 and Ω43 +  Ω21 are thus generated by ampli-
tude modulation, and are used to demodulate the output of the sample solar cell. A Zurich Instruments HF2TA 
Current Amplifier is used to convert the current output of the sample device to voltage, as well as to supply an 
external bias to the device. The non-linear signals of interest oscillate at the frequencies Ω43 −  Ω21 and Ω43 +  Ω21 
and in 2D spectroscopy these are usually referred to respectively as rephasing and non-rephasing signals. The 
overall photocurrent signal is filtered by means of a dual lock-in amplifier in order to extract these two frequency 
components. The 2D spectra are obtained measuring the demodulated signals scanning t21 and t43 at fixed t32. The 
three interpulse delay times t21, t32 and t43 are independently computer controlled using three delay stages. The 
in-phase and the in-quadrature detection channels of the dual lock-in amplifier simultaneously provide the real 
and imaginary parts of the rephasing and non-rephasing signals for each of such scans. The 2D response function 
so acquired in the time domain is converted to the energy domain by Fourier-transforming the time variables t21 
and t43 as a parametric function of the t32 interpulse time.

References
1. Bredas, J.-L. When electrons leave holes in organic solar cells. Science 343, 492–493 (2014).
2. Gélinas, S. et al. The Binding Energy of Charge-Transfer Excitons Localized at Polymeric Semiconductor Heterojunctions. J. Phys. 

Chem. C 115, 7114–7119 (2011).
3. Sariciftci, N. S. & Heeger, A. J. Reversible, metastable, ultrafast photoinduced electron-transfer from semiconducting polymers to 

buckminsterfullerene and in the corresponding donor-acceptor heterojunctions. International Journal of Modern Physics B 8, 
237–274 (1994).

4. Banerji, N., Cowan, S., Leclerc, M., Vauthey, E. & Heeger, A. J. Exciton Formation, Relaxation, and Decay in PCDTBT. Journal of the 
American Chemical Society 132, 17459–17470 (2010).

5. Tong, M. et al. Charge carrier photogeneration and decay dynamics in the poly(2,7-carbazole) copolymer PCDTBT and in bulk 
heterojunction composites with PC70BM. Phys. Rev. B 81, 125210 (2010).

6. Sheng, C.-X., Basel, T., Pandit, B. & Vardeny, Z. V. Photoexcitation dynamics in polythiophene/fullerene blends for photovoltaic 
applications. Organic Electronics 13, 1031–1037 (2012).

7. Jailaubekov, A. E. et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic 
photovoltaics. Nat Mater 12, 66–73 (2013).

8. Grancini, G. et al. Hot exciton dissociation in polymer solar cells. Nat Mater 12, 29–33 (2013).
9. Kaake, L. G., Moses, D. & Heeger, A. J. Coherence and uncertainty in nanostructured organic photovoltaics. The Journal of Physical 

Chemistry Letters 4, 2264–2268 (2013).
10. Mukamel, S. Comment on “Coherence and uncertainty in nanostructured organic photovoltaics”. The Journal of Physical Chemistry 

A 117, 10563–10564 (2013).
11. Banerji, N. Sub-picosecond delocalization in the excited state of conjugated homopolymers and donor–acceptor copolymers. J. 

Mater. Chem. C 1, 3052–3066 (2013).
12. Gélinas, S. et al. Coherent charge separation in organic semiconductor photovoltaic diodes. Science 343, 521–516 (2014).
13. Provencher, F. et al. Direct observation of ultrafast long-range charge separation at polymer:fullerene heterojunctions. Nat Commun 

5, 4288 (2014).
14. Barbara, P., Meyer, T. & Ratner, M. Contemporary issues in electron transfer research. J Phys Chem-Us 100, 13148–13168 (1996).
15. Falke, S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014).
16. Ishizaki, A. & Fleming, G. R. Theoretical examination of quantum coherence in a photosynthetic system at physiological 

temperature. Proceedings of the National Academy of Sciences 106, 17255–17260 (2009).
17. Song, Y., Clafton, S. N., Pensack, R. D., Kee, T. W. & Scholes, G. D. Vibrational coherence probes the mechanism of ultrafast electron 

transfer in polymer&ndash;fullerene blends. Nature Communications 5, 4933 (2014).
18. Andrea Rozzi, C. et al. Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system. Nat 

Commun 4, 1602 (2013).
19. Bittner, E. R. & Silva, C. Noise-induced quantum coherence drives photo-carrier generation dynamics at polymeric semiconductor 

heterojunctions. Nat Commun 5, 3119 (2014).
20. Yao, Y., Zhou, N., Prior, J. & Zhao, Y. Competition between diagonal and off-diagonal coupling gives rise to charge-transfer states in 

polymeric solar cells. Scientific Reports 5, 14555 (2015).
21. Zhao, Y., Yao, Y., Chernyak, V. & Zhao, Y. Communication: Spin-boson model with diagonal and off-diagonal coupling to two 

independent baths: Ground-state phase transition in the deep sub-ohmic regime. J Chem Phys 140, 161105 (2014).
22. Bakulin, A. A., Silva, C. & Vella, E. Ultrafast spectroscopy with photocurrent detection: Watching excitonic optoelectronic systems 

at work. J. Phys. Chem. Lett. 7, 250–258 (2016).
23. Nardin, G., Autry, T. M., Silverman, K. L. & Cundiff, S. T. Multidimensional coherent photocurrent spectroscopy of a semiconductor 

nanostructure. Opt. Express 21, 28617–28627 (2013).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:29437 | DOI: 10.1038/srep29437

24. Karki, K. J. et al. Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell. Nat. Commun. 5, 5869 
(2014).

25. Few, S., Frost, J. M. & Nelson, J. Models of charge pair generation in organic solar cells. Phys. Chem. Chem. Phys. 17, 2311–2325 
(2015).

26. Few, S., Frost, J. M., Kirkpatrick, J. & Nelson, J. Influence of chemical structure on the charge transfer state spectrum of a 
polymer:fullerene complex. Journal of Physical Chemistry C 118, 8253–8261 (2014).

27. Goris, L. et al. Absorption phenomena in organic thin films for solar cell applications investigated by photothermal deflection 
spectroscopy. Journal of Materials Science 40, 1413–1418 (2005).

28. Beenken, W. J. D. et al. Sub-bandgap absorption in organic solar cells: experiment and theory. Phys. Chem. Chem. Phys. 15, 
16494–16502 (2013).

29. Goris, L. et al. Observation of the subgap optical absorption in polymer-fullerene blend solar cells. Applied Physics Letters 88, 052113 
(2006).

30. Benson-Smith, J. et al. Formation of a ground-state charge-transfer complex in polyfluorene//[6,6]-phenyl-C61 butyric acid methyl 
ester (PCBM) blend films and its role in the function of polymer/PCBM solar cells. Advanced Functional Materials 17, 451–457 
(2007).

31. Loi, M. et al. Charge transfer excitons in bulk heterojunctions of a polyfluorene copolymer and a fullerene derivative. Advanced 
Functional Materials 17, 2111–2116 (2007).

32. Tvingstedt, K. et al. Electroluminescence from charge transfer states in polymer solar cells. Journal of the American Chemical Society 
131, 11819–11824 (2009).

33. Niedzialek, D. et al. First principles calculations of charge transfer excitations in polymer–fullerene complexes: Influence of excess 
energy. Advanced Functional Materials 25, 1972–1984 (2015).

34. Isaacs, E. B., Sharifzadeh, S., Ma, B. & Neaton, J. B. Relating trends in first-principles electronic structure and open-circuit voltage in 
organic photovoltaics. The Journal of Physical Chemistry Letters 2, 2531–2537 (2011).

35. Baumeier, B., Andrienko, D. & Rohlfing, M. Frenkel and charge-transfer excitations in donor–acceptor complexes from many-body 
green’s functions theory. Journal of Chemical Theory and Computation 8, 2790–2795 (2012).

36. Yost, S. R. & Voorhis, T. V. Electrostatic effects at organic semiconductor interfaces: A mechanism for “cold” exciton breakup. The 
Journal of Physical Chemistry C 117, 5617–5625 (2013).

37. Poelking, C. et al. Impact of mesoscale order on open-circuit voltage in organic solar cells. Nat Mater  14, 434–439 (2015).
38. Karabunarliev, S. & Bittner, E. R. Spin-dependent electron-hole capture kinetics in luminescent conjugated polymers. Physical 

Review Letters 90, 057402 (2003).
39. Karabunarliev, S. & Bittner, E. R. Polaron–excitons and electron–vibrational band shapes in conjugated polymers. The Journal of 

Chemical Physics 118, 4291–4296 (2003).
40. Savoie, B. M. et al. Unequal partnership: Asymmetric roles of polymeric donor and fullerene acceptor in generating free charge. 

Journal of the American Chemical Society 136, 2876–2884 (2014).
41. Raos, G., Casalegno, M. & Idé, J. An effective two-orbital quantum chemical model for organic photovoltaic materials. Journal of 

Chemical Theory and Computation 10, 364–372 (2014).
42. Bakulin, A. A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 

1340–1344 (2012).
43. Gutiérrez-González, I., Molina-Brito, B., Götz, A. W., Castillo-Alvarado, F. & Rodríguez, J. I. Structural and electronic properties of 

the p3ht–pcbm dimer: A theoretical study. Chemical Physics Letters 612, 234 – 239 (2014).
44. Liu, Y., Chipot, C., Shao, X. & Cai, W. Free-energy landscape of the helical wrapping of a carbon nanotube by a polysaccharide. The 

Journal of Physical Chemistry C 115, 1851–1856 (2011).
45. Alicki, R. & Lendi, K. Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1987).
46. Kosloff, R., Ratner, M. A. & Davis, W. B. Dynamics and relaxation in interacting systems: Semigroup methods. J. Chem. Phys. 106, 

7036–7043 (1997).
47. Perdomo-Ortiz, A., Widom, J. R., Lott, G. A., Aspuru-Guzik, A. & Marcus, A. H. Conformation and electronic population transfer 

in membrane-supported self-assembled porphyrin dimers by 2d fluorescence spectroscopy. J. Phys. Chem. B 116, 10757–10770 
(2012).

48. Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3, 297–302 (2009).
49. Sun, Y. et al. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer. Advanced 

Materials 23, 2226–2230 (2011).
50. Tokmakoff, A. Two-Dimensional Line Shapes Derived from Coherent Third-Order Nonlinear Spectroscopy. J. Phys. Chem. A 104, 

4247–4255 (2000).
51. Bässler, H. & Köhler, A. “Hot or cold”: how do charge transfer states at the donor-acceptor interface of an organic solar cell 

dissociate? Phys. Chem. Chem. Phys. 17, 28451–28462 (2015).
52. Bittner, E. R. & Kelley, A. The role of structural fluctuations and environmental noise in the electron/hole separation kinetics at 

organic polymer bulk-heterojunction interfaces. Phys. Chem. Chem. Phys. 17, 28853–28859 (2015).
53. Huix-Rotllant, M., Tamura, H. & Burghardt, I. Concurrent effects of delocalization and internal conversion tune charge separation 

at regioregular polythiophene–fullerene heterojunctions. The Journal of Physical Chemistry Letters 6, 1702–1708 (2015).
54. Tekavec, P. F., Lott, G. A. & Marcus, A. H. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-

optic phase modulation. J. Chem. Phys. 127, 214307 (2007).

Acknowledgements
The work at the University of Houston was funded in part by the National Science Foundation (CHE:1362006 
and ACI:1531814) and the Robert A. Welch Foundation (E-1337). The work in Montreal was funded by the 
Natural Sciences and Engineering Research Council of Canada, the Fonds de recherche du Québec - Nature et 
Technologies, and the University Research Chair in Organic Semiconductor Materials. The work at Imperial 
College London was supported by the Engineering and Physical Sciences Research Council via grants EP/
K030671, EP/K029843 and EP/J017361 and through a doctoral training studentship (EP/G037515), and by 
The Royal Society through a Wolfson Merit Award. Montreal and Imperial were supported by an International 
Exchanges grant from The Royal Society. E.V. and C.S.-A. also wish to thank Prof. Andrew Marcus for many 
fruitful discussions concerning this work, especially for the construction of the 2DPCE apparatus.

Author Contributions
E.R.B. and C.S.-A. conceived the project. H.L. developed the model for the spectral simulation calculations 
and analyzed the results. E.V. and P.G. collected and analyzed the experimental 2DPCE data. S.M.T. and M.S.V. 
fabricated and characterized the devices. C.M.B. measured the photocurrent excitation spectrum. S.F. carried 



www.nature.com/scientificreports/

1 2Scientific RepoRts | 6:29437 | DOI: 10.1038/srep29437

out theoretical ab initio calculations on the electronic states of oligomer: PCBM systems. J.N. directed the device 
fabrication, characterization, and ab initio calculations. 

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Vella, E. et al. Ultrafast decoherence dynamics govern photocarrier generation 
efficiencies in polymer solarcells. Sci. Rep. 6, 29437; doi: 10.1038/srep29437 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells
	Results
	Theoretical model. 
	2D photocurrent excitation spectroscopy. 

	Discussion
	Methods
	Solar cell preparation and characterization. 
	2DPCE Apparatus. 

	Acknowledgements
	Author Contributions
	Figure 1.  (a) Schematic of the relevant energy levels in our model along with their couplings.
	Figure 2.  Redistribution of charge, excitation energy, and unscreened Coulomb binding energy for two excitations of a CDTBT oligomer: PCBM molecule pair.
	Figure 3.  Calculated excitation spectrum for a 3CDTBT oligomer and a PCBM molecule, each alone, and as a molecule pair.
	Figure 4.  Theoretical 2DPCE total correlation functions for the model system with increasing decoherence times (τd = ħ/γ).
	Figure 5.  (a) Structure of PCDTBT (left) and PCBM (right).
	Figure 6.  Two dimensional coherent photocurrent excitation (2DPCE) spectra at a population waiting time t32 = 0 fs measured under a bias voltage of ≈0.
	Figure 7.  Anti-diagonal slice of the 2DPCE rephasing signal.
	Figure 8.  (a) Schematic diagram of the 2DPCE setup involving a Mach-Zehnder interferometer with inner Mach-Zehnder interferometers nested in each arm of the outer one.



 
    
       
          application/pdf
          
             
                Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells
            
         
          
             
                srep ,  (2016). doi:10.1038/srep29437
            
         
          
             
                Eleonora Vella
                Hao Li
                Pascal Grégoire
                Sachetan M. Tuladhar
                Michelle S. Vezie
                Sheridan Few
                Claudia M. Bazán
                Jenny Nelson
                Carlos Silva-Acuña
                Eric R. Bittner
            
         
          doi:10.1038/srep29437
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep29437
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep29437
            
         
      
       
          
          
          
             
                doi:10.1038/srep29437
            
         
          
             
                srep ,  (2016). doi:10.1038/srep29437
            
         
          
          
      
       
       
          True
      
   




