398 research outputs found

    Polarization instabilities in a two-photon laser

    Full text link
    We describe the operating characteristics of a new type of quantum oscillator that is based on a two-photon stimulated emission process. This two-photon laser consists of spin-polarized and laser-driven 39^{39}K atoms placed in a high-finesse transverse-mode-degenerate optical resonator, and produces a beam with a power of \sim 0.2 μ\mu W at a wavelength of 770 nm. We observe complex dynamical instabilities of the state of polarization of the two-photon laser, which are made possible by the atomic Zeeman degeneracy. We conjecture that the laser could emit polarization-entangled twin beams if this degeneracy is lifted.Comment: Accepted by Physical Review Letters. REVTeX 4 pages, 4 EPS figure

    Review of the Constellation Level II Safety, Reliability, and Quality Assurance (SR&QA) Requirements Documents during Participation in the Constellation Level II SR&QA Forum

    Get PDF
    At the request of the Exploration Systems Mission Directorate (ESMD) and the Constellation Program (CxP) Safety, Reliability; and Quality Assurance (SR&QA) Requirements Director, the NASA Engineering and Safety Center (NESC) participated in the Cx SR&QA Requirements forum. The Requirements Forum was held June 24-26; 2008, at GRC's Plum Brook Facility. The forums purpose was to gather all stakeholders into a focused meeting to help complete the process of refining the CxP to refine its Level II SR&QA requirements or defining project-specific requirements tailoring. Element prime contractors had raised specific questions about the wording and intent of many requirements in areas they felt were driving costs without adding commensurate value. NESC was asked to provide an independent and thorough review of requirements that contractors believed were driving Program costs, by active participation in the forum. This document contains information from the forum

    Bounds on the width, mass difference and other properties of X(3872) --> pi+pi-J/psi decays

    Full text link
    We present results from a study of X(3872) --> pi+pi- J/psi decays produced via exclusive B--> K X(3872) decays. We determine the mass to be M_X(3872)= (3871.84\pm 0.27 (stat)\pm 0.19 (syst)) MeV, a 90% CL upper limit on the natural width of Gamma_X(3872) K+X(3872))xBf(X(3872)-->pi+pi-J/psi)=(8.61 \pm 0.82(stat) \pm 0.52 (syst)) x10^{-6}, and a ratio of branching fractions Bf(B0--> K0 X(3872))/BF(B+--> K+ X(3872))=0.50\pm 0.14(stat)\pm0.04(syst). The difference in mass between the X(3872)-->pi+pi-J/psi signals in B+ and B0 decays is Delta M_{X(3872)= (-0.69 \pm 0.97 (stat)} \pm 0.19 (syst)) MeV. A search for a charged partner of the X(3872) in the decays Bbar0-->K- X+ or B+-->K0X+, X+-->pi+pi0 J/psi resulted in upper limits on the product branching fractions for these processes that are well below expectations for the case that the X(3872) is the neutral member of an isospin triplet. In addition, we examine possible J^{PC} quantum number assignments for the X(3872) based on comparisons of angular correlations between final state particles in X(3872)-->pi+pi-J/psi decays with simulated data for J^{PC} values of 1^{++} and 2^{-+}. We examine the influence of rho-omega interference in the M(pi+pi-) spectrum. The analysis is based on a 711fb^{-1} data sample that contains 772 million BBbar meson pairs collected at the Upsilon(4S) resonance in the Belle detector at the KEKB e+e- collider.Comment: 15 pages, 10 figures and 6 tables. Submitted to Physical Review

    Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data

    Get PDF
    We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×1065\times 10^{6} GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10610^{6} GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×1065 \times 10^{6} and 5×10105 \times 10^{10} GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\ {\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}at at 10^9\ {\rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Inclusive Charm Production in Two-Photon Collisions at LEP

    Get PDF
    The cross section of charm production in γγ\mathrm{\gamma \gamma} collisions σ(e+ee+eccˉX)\mathrm{\sigma (e^+e^- \rightarrow e^+e^-c\bar{c} X)} is measured at LEP with the L3 detector at centre of mass energies from 91 GeV to 183 GeV. Charmed hadrons are identified by electrons and muons from semi-leptonic decays. The direct process γγccˉ\mathrm{\gamma \gamma \rightarrow c \bar{c}} is found to be insufficient to describe the data. The measured cross section values and event distributions require contributions from resolved processes, which are sensitive to the gluon density in the photon
    corecore