216 research outputs found

    Advancing interoperable soil data exchange for global soil data information systems

    Get PDF
    In order to be able to address local, regional and global issues such as sustainable land management, food security, climate change mitigation and soil-related indicators of the UN Agenda for Sustainable Development the need for reliable, relevant and accurate soil information and data is increasing. Currently, ..

    Modelling the impact of climate change on Tanzanian forests

    Get PDF
    This research article was published by Wiley Online Library in 2020Aim: Climate change is pressing extra strain on the already degraded forest eco system in Tanzania. However, it is mostly unknown how climate change will affect the distribution of forests in the future. We aimed to model the impacts of climate change on natural forests to help inform national-level conservation and mitigation strategies. Location: Tanzania. Methods: We conducted maximum entropy (MaxEnt) modelling to simulate forest habitat suitability using the Tanzanian national forest inventory survey (1,307 oc currences) and environmental data. Changes in forest habitats were simulated under two Representative Concentration Pathways (RCPs) emission scenarios RCP 4.5 and RCP 8.5 for 2055 and 2085. Results: The results indicate that climate change will threaten forest communities, especially fragmented strips of montane forests. Even under optimistic emission scenario, the extent of montane forest is projected to almost halve by 2085, inter secting many biodiversity hotspots across the Eastern Arc Mountains. Similarly, cli mate change is predicted to threaten microhabitat forests (i.e. thickets), with losses exceeding 70% by 2085 (RCP8.5). Other forest habitats are predicted to decrease (lowland forest and woodland) representing essential ecological networks, whereas suitable habitats for carbon-rich mangroves are predicted to expand by more than 40% at both scenarios. Conclusions: Climate change will impact forests by accelerating habitat loss, and fragmentation and the remaining land suitable for forests will also be subject to pres sures associated with rising demand for food and biofuels. These changes are likely to increase the probability of adverse impacts to the country's indigenous flora and fauna. Our findings, therefore, call for a shift in conservation efforts, focusing on (i) the enhanced management of existing protected areas that can absorb the impacts of future climate change, and (ii) expanding conservation efforts into newly suitable regions through effective land use planning and land reclamation, helping to preserve and enhance forest connectivity between fragmented patches

    Diverse soil carbon dynamics expressed at the molecular level

    Get PDF
    The stability and potential vulnerability of soil organic matter (SOM) to global change remains incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and sub-alpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally-defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids (n-alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14C variations among shorter- and longer-chain n-alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change

    Disturbance distance: quantifying forests' vulnerability to disturbance under current and future conditions

    Get PDF
    Disturbances, both natural and anthropogenic, are critical determinants of forest structure, function, and distribution. The vulnerability of forests to potential changes in disturbance rates remains largely unknown. Here, we developed a framework for quantifying and mapping the vulnerability of forests to changes in disturbance rates. By comparing recent estimates of observed forest disturbance rates over a sample of contiguous US forests to modeled rates of disturbance resulting in forest loss, a novel index of vulnerability, Disturbance Distance, was produced. Sample results indicate that 20% of current US forestland could be lost if disturbance rates were to double, with southwestern forests showing highest vulnerability. Under a future climate scenario, the majority of US forests showed capabilities of withstanding higher rates of disturbance then under the current climate scenario, which may buffer some impacts of intensified forest disturbanceinfo:eu-repo/semantics/publishedVersio

    Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra

    Get PDF
    Much of the 191.8 Pg C in the upper 1 m of Arctic soil of Arctic soil organic mater is, or is at risk of, being released to the atmosphere as CO2 and/or CH4. Global warming will further alter the rate of emission of these gases to the atmosphere. Here we quantify the effect of major environmental variables affected by global climate change on CH4 fluxes in the Alaskan Arctic. Soil temperature best predicts CH4 fluxes and explained 89% of the variability in CH4 emissions. Water table depth has a nonlinear impact on CH4 efflux. Increasing water table height above the surface retards CH4 efflux. Decreasing water table depth below the surface has a minor effect on CH4 release once an aerobic layer is formed at the surface. In contrast with several other studies, we found that CH4 emissions are not driven by net ecosystem exchange (NEE) and are not limited by labile carbon supply

    Water balance creates a threshold in soil pH at the global scale

    Full text link
    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility-rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate

    Africa and the global carbon cycle

    Get PDF
    The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought) induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO(2). Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century

    A model of the Arctic Ocean carbon cycle

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12020, doi:10.1029/2011JC006998.A three dimensional model of Arctic Ocean circulation and mixing, with a horizontal resolution of 18 km, is overlain by a biogeochemical model resolving the physical, chemical and biological transport and transformations of phosphorus, alkalinity, oxygen and carbon, including the air-sea exchange of dissolved gases and the riverine delivery of dissolved organic carbon. The model qualitatively captures the observed regional and seasonal trends in surface ocean PO4, dissolved inorganic carbon, total alkalinity, and pCO2. Integrated annually, over the basin, the model suggests a net annual uptake of 59 Tg C a−1, within the range of published estimates based on the extrapolation of local observations (20–199 Tg C a−1). This flux is attributable to the cooling (increasing solubility) of waters moving into the basin, mainly from the subpolar North Atlantic. The air-sea flux is regulated seasonally and regionally by sea-ice cover, which modulates both air-sea gas transfer and the photosynthetic production of organic matter, and by the delivery of riverine dissolved organic carbon (RDOC), which drive the regional contrasts in pCO2 between Eurasian and North American coastal waters. Integrated over the basin, the delivery and remineralization of RDOC reduces the net oceanic CO2 uptake by ~10%.This study has been carried out as part of ECCO2 and SASS (Synthesis of the Arctic System Science) projects funded by NASA and NSF, respectively. MM and MJF are grateful for support from the National Science Foundation (ARC-0531119 and ARC-0806229) for financial support. MM also acknowledges NASA for providing computer time, the use of the computing facilities at NAS center and also the Scripps post-doctoral program for further financial support that helped to complete the manuscript. RMK also acknowledges NOAA for support (NA08OAR4310820 and NA08OAR4320752).2012-06-1
    corecore