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Abstract
Aim: Climate change is pressing extra strain on the already degraded forest eco-
system in Tanzania. However, it is mostly unknown how climate change will affect 
the distribution of forests in the future. We aimed to model the impacts of climate 
change on natural forests to help inform national-level conservation and mitigation 
strategies.
Location: Tanzania.
Methods: We conducted maximum entropy (MaxEnt) modelling to simulate forest 
habitat suitability using the Tanzanian national forest inventory survey (1,307 oc-
currences) and environmental data. Changes in forest habitats were simulated under 
two Representative Concentration Pathways (RCPs) emission scenarios RCP 4.5 and 
RCP 8.5 for 2055 and 2085.
Results: The results indicate that climate change will threaten forest communities, 
especially fragmented strips of montane forests. Even under optimistic emission 
scenario, the extent of montane forest is projected to almost halve by 2085, inter-
secting many biodiversity hotspots across the Eastern Arc Mountains. Similarly, cli-
mate change is predicted to threaten microhabitat forests (i.e. thickets), with losses 
exceeding 70% by 2085 (RCP8.5). Other forest habitats are predicted to decrease 
(lowland forest and woodland) representing essential ecological networks, whereas 
suitable habitats for carbon-rich mangroves are predicted to expand by more than 
40% at both scenarios.
Conclusions: Climate change will impact forests by accelerating habitat loss, and 
fragmentation and the remaining land suitable for forests will also be subject to pres-
sures associated with rising demand for food and biofuels. These changes are likely 
to increase the probability of adverse impacts to the country's indigenous flora and 
fauna. Our findings, therefore, call for a shift in conservation efforts, focusing on (i) 
the enhanced management of existing protected areas that can absorb the impacts 
of future climate change, and (ii) expanding conservation efforts into newly suitable 
regions through effective land use planning and land reclamation, helping to preserve 
and enhance forest connectivity between fragmented patches.
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1  | INTRODUC TION

Tropical forests form the most abundant terrestrial reservoir of car-
bon storage and biodiversity (Newmark, 2006), but have experienced 
climate change impact, deforestation and habitat fragmentation 
(Bonan, 2008; Gibbs et al., 2010). The projected increase in global 
mean temperature of 4.3 ± 0.7 0C by 2,100 for RCP8.5 is likely to af-
fect further the geographical distribution, composition and produc-
tivity of tropical forest ecosystems (IPCC, 2014) adversely affecting 
vital ecosystem services. Sub-Saharan Africa has been identified 
as one of the most vulnerable parts of the world to the effects of 
climate change (Chidumayo, Okali, Kowero, & Larwanou, 2011; 
Serdeczny et al., 2016). Climate change is predicted to increase haz-
ards such as flood and fire hazard, disease, food insecurity and habi-
tat degradation (Serdeczny et al., 2016).

The effects of climate change on African tropical forest habi-
tats mostly results from changes in precipitation patterns (particu-
larly the influence of the El Niño-Southern Oscillation (ENSO)) (Butt 
et al., 2015) and the Subtropical Indian Ocean Dipole (SIOD)) and 
subsequent effects on soils and groundwater availability (Müller, 
Waha, Bondeau, & Heinke, 2014), alongside increases in atmospheric 
availability of CO2 concentration and nitrogen deposition (Serdeczny 
et al., 2016). Even though the effect of climate changes has already 
been felt, its impact on the tropical forests remains relatively under-
studied (Delire, Ngomanda, & Jolly, 2008; Markham, 1998; Pacifici 
et al., 2015). This is mainly in resource-poor sub-Saharan Africa, 
where data are scarce, creating a barrier to incorporating climate 
change scenarios into land management and conservation planning 
(Lee & Jetz, 2008).

Increasingly, global initiatives and commitments are consid-
ering African tropical forests as critical components of climate 
change mitigation strategies such as the Bonn Challenge on Forest 
landscape restoration (FLR) (Seidl et al., 2017), the United Nations 
Framework Convention on Climate Change (UNFCCC) on reduc-
ing emissions from deforestation and forest degradation (REDD+) 
(Romijn, Herold, Kooistra, Murdiyarso, & Verchot, 2012), the 
Rio + 20 land degradation neutrality (Grainger, 2015), Aichi Target 
15 on the restoration of degraded ecosystems (Tobón et al., 2017) 
and the 2030 agenda of the United Nations for Sustainable de-
velopment goals (SDGs) 13 and 15 (Swamy, Drazen, Johnson, & 
Bukoski, 2017). To ensure that these strategies are successful and 
enable effective conservation, it is essential to establish a baseline 
in terms of forest habitat extent and resilience to climate change 
pressures (Clark, Gelfand, Woodall, & Zhu, 2014; Verdone & 
Seidl, 2017). This should be determined in a scalable and tractable 
manner, including modelling projections of future distributions to 
bridge the gap of data deficiency regarding sub-Saharan forests 
(Montagnini & Jordan, 2005).

Habitat suitability modelling (hereafter referred to as HSM) 
or species distribution modelling is widely applied in estimating 
changes in habitat suitability and counteract negative impacts of 
climate change (Edenius & Mikusiński, 2006; Lim et al., 2018; Title 
& Bemmels, 2017). It represents a valuable tool for informing poli-
cy-makers about the effects of climate change on forest community 
(Seidl et al., 2017). HSM focuses at identifying both the most influ-
ential environmental and climatic variables describing presence/
absences, abundances or even growing conditions of forest species 
and the optimal relationships between their distributions and these 
explanatory variables (Jiménez-Alfaro et al., 2018). The provision 
of environmental and climatic variables from globally, often freely, 
available Earth Observation (EO) datasets enables simulations and 
subsequent information to be determined over scales that are suit-
able for national, regional and even global decision-making (Edenius 
& Mikusiński, 2006).

Maximum entropy (MaxEnt) modelling (Phillips, Anderson, & 
Schapire, 2006; Renner & Warton, 2013) has been used to suc-
cessfully predict forest species habitat suitability under current and 
future climate scenarios for a range of sites across the world. For 
example, climate change impacts on forest habitat suitability and 
diversity in the Korean Peninsula (Lim et al., 2018); how much does 
climate change threatens European forest tree species distributions 
(Dyderski, Paź, Frelich, & Jagodziński, 2017); climate change impact 
on the distribution of Dipterocarp trees in Asia (Deb, Phinn, Butt, 
& McAlpine, 2017); induced range shift in miombo woodland due 
to climate change in Southern Africa (Pienaar, Thompson, Erasmus, 
Hill, & Witkowski, 2015). However, most of these studies are lim-
ited to a single-tree species, lacking multiple tree species (such as 
Edenius & Mikusiński, 2006; Jiménez-Alfaro et al., 2018; Rondinini, 
Stuart, & Boitani, 2005). In contrast, modelling multiple tree species 
tend to yield better results (Edenius & Mikusiński, 2006) as this ap-
proach relies on detecting the shared pattern of the environment 
response for sparsely recorded species, thereby simplifying intricate 
species-specific patterns. It also enables direct interpretation by de-
cision-makers (Ferrier & Guisan, 2006) that would typically be at the 
community level, except for studies into particular threatened spe-
cies (Brummitt et al., 2015).

Approaches like MaxEnt rely on the availability of species or 
habitat presence data, typically based on field observations of a 
particular species or habitat. In the United Republic of Tanzania, the 
National Forest Inventory (NFI) provides a comprehensive dataset 
that includes over 19 thousand observations of forest type with over 
50 thousand points for dominant tree species over all ecological 
zones across the country (Minunno et al., 2019; Storch, Dormann, & 
Bauhus, 2018; Tomppo et al., 2014) providing an exciting opportu-
nity to provide baseline maps of forests and woodlands extent and 
the subsequent influence of climate change (Lim et al., 2018).

K E Y W O R D S

Biodiversity conservation, climate change, conservation planning, habitat fragmentation, 
habitat suitability modelling, MaxEnt modelling, Tanzania
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This study uses MaxEnt to map the distribution of forest types 
in Tanzania centred on two climate Representative Concentration 
Pathways (RCPs) scenarios (RCP4.5 and RCP8.5) and the future pe-
riod of 2055 and 2085. Specifically, we addressed the following re-
search questions: (1) What are the vital climatic factors that affect 
the distribution of forest types based on dominant tree species in 
Tanzania? (2) What are the impacts of climate change on the distri-
bution of the prevalent tree species habitats? (3) What are the im-
plications for changes in the distribution of forest habitats on the 
conservation of globally significant indigenous flora and fauna?

2  | METHODS

2.1 | Study area

This study focused on the mainland United Republic of Tanzania 
(hereafter referred to as Tanzania) in East Africa (Figure 1). Tanzania's 
precipitation is characterized by bimodal rainfall distribution pat-
terns ranging below 400 mm and over 2000 mm per year (Hardy 
et al., 2013). The maximum mean temperature ranges of 26.6–
33.1°C and minimum at 5.3–18.3°C (NBS, 2017). The diverse geo-
morphological landscape results in a variety of climatic conditions, 
giving rise to a different set of forest communities (Table 1) from 
lowland rainforests in the north-west of the country to montane for-
ests scattered across upland areas associated with the Eastern Arc 
Mountains (Burgess et al., 2004).

In Tanzania, forests (Figure 2 and Table 1) occupy an esti-
mated 48.1 million hectares of land, equivalent to 55% of the total 
area (MNRT, 2015). Forests in Tanzania are rich in biodiversity 
and placed among the 36 global biodiversity hotspots (Hrdina & 
Romportl, 2017; Myers, Mittermeier, Mittermeier, Da Fonseca, & 
Kent, 2000). However, it is among the countries with the highest 
reported forest loss (Hansen et al., 2013) and high vulnerability to 
the effects of climate change (Montade et al., 2018; Platts, McClean, 
Lovett, & Marchant, 2008). Forests contribute significantly to rural 
life in Tanzania for food security, woody biomass for energy sup-
ply and household subsistence. Ecologically, forests help to con-
serve soil and water resources, harbouring genetic, functional and 
taxonomic diversity. Approximately 35% of forests are protected 
through forest reserves, national parks and game controlled areas. 
However, 75% of forests are found on unprotected, general-use land 
and are therefore vulnerable to degradation or deforestation, mainly 
due to growing need for agriculture and biofuel production, as well 
as extensive uncontrolled firewood collection, charcoal production, 
as well as the effects of forest fires (MNRT, 2015).

3  | DATA SETS

3.1 | Forest occurrence data

Forest occurrence records were acquired from the National Forest 
Resources Monitoring and Assessment (NAFORMA) released in 

F I G U R E  1   Study area with the 
distribution of the presence points for 
dominant tree species from natural forest 
types in Tanzania. EPSG: 4,326, WGS84 
projection



4  |     JOHN et al.

TA B L E  1   Descriptions and main characteristics of the forest types (Figure 1) in Tanzania (MNRT, 2015)

Forest types

Description Altitude (m) Crown cover (%) Height (m)Level 1 Level 2

Forest Montane Catchment forests found in mountainous areas 
and changes with elevation

1400–1850 > 40 > 5

Lowland Include groundwater forest and mainly located 
near the coast of the Indian ocean and in small 
portion of the mixture with woodlands and 
montane forest

540– 810 > 40 > 5

Mangrove Grow on the upper part of the inter-tidal zone of 
the sheltered shores of the delta, alongside the 
river estuaries and the creeks, mainly along the 
Indian Ocean. May occur with other wooded 
land vegetation

≤ 25 > 40 > 5

Woodland Closed woodland Dominated with perennial C4-grasses which 
induce regular fire occurrences in the month of 
May to November before rain season

100–1400 > 40 > 5

Open woodland The same description as closed woodland with 
the difference in canopy cover

100–1400 10–40 > 5

Thicket Thicket Dense evergreen or deciduous thorn woodland. 
Grow interlocked and make impassable 
community

1244–1300 5–10 <5

F I G U R E  2   Aerial photographs for the 
natural forest types in Tanzania based on 
drone capture (height ~ 60 m), October 
2019: (a) montane forest, (b) lowland 
forest (c) mangrove forest, (d) closed 
woodland, (e) open woodland and  
(f) thicket

(a) (b)

(c) (d)

(e) (f)
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2015. A total of 19,382 plots were measured between 2010 and 
2014 containing 59,208 forest type points (dominant tree species) 
(MNRT, 2015). The dominant tree species are proxy indicators of 
habitat types for different existing forest types and dependent spe-
cies (e.g. epiphytes of montane forests). Therefore, when dominant 
species change, this may impact connected species in the ecosys-
tem. Hence, they provide long-term forest monitoring of habitat in 
response to climate change (Dyderski et al., 2017). The presence-
only records were chosen based on abundance from the plot meas-
urements for each forest type (Figure 2 and Table 1). The selection 
included both percentage frequency (occurrence) and abundance 
(proportional of individuals). This implies that only the most frequent 
and abundant species from each forest type were selected.

The plots consisted of 1, 5, 10 and 15 m radius concentric nested 
circular sub-plots, collected over a series of study clusters—L-shaped 
transects, consisting of six to ten plots with 250 m spacing between 

plots. The study clusters were distributed based on a double sam-
pling for stratification approach (see Tomppo et al. (2014)) for full de-
tails of this procedure). The timberline species were excluded from 
the analysis as their habitat changes are mainly the result of different 
non-climatic anthropogenic drivers such as land management deci-
sions (e.g. Bodin et al., 2013).

3.2 | Spatial rarefaction

Geographical bias in the habitat or species occurrence data is likely 
to result in model over-fitting and artificial inflation of model per-
formance (Boria, Olson, Goodman, & Anderson, 2014; Veloz, 2009). 
Therefore, the original 59,208 forest type points underwent a step-
wise spatial rarefication process, based on the random selection 
of a single location within grids of increasing size (Brown, 2014). 

TA B L E  2   Summary statistical information for major predictor variables of forest types based on the occurrence data used in this study. 
Bio1: mean annual temperature; Bio12: mean annual rainfall; Bio14: rainfall driest month; Elv: elevation; Tri: terrain ruggedness index

Forest type Scientific name of dominant trees Code Unit Mean SD Min. Max.

Montane Ekerbergis Capensis, Olea 
capensis, Albizia gummifera, 
Ocotea usambaraensis, Newtonia 
buchananni,

Bio1 °C 17.01 0.10 10.40 26.10

Bio12 mm 1,247.61 10.72 850.00 2,686.00

Bio14 mm 14.80 0.64 0.00 66.00

Elv m 1,760 19 235 3,039

Tri m 92.11 1.94 8.38 229.88

Lowland Antiaris toxicaria, Scorodophloeus 
fischeri, Soriendea 
madagascariensis, Milletia 
stuhlmannii and Milicia excelsa

Bio1 °C 24.72 0.04 15.00 27.30

Bio12 mm 1,219.44 6.47 610.00 2,735.00

Bio14 mm 11.20 0.33 0.00 56.00

Elv m 363.32 7.34 9.00 2,377.00

Tri m 36.40 1.20 1.12 279.25

Mangrove Avicennia marina, Sonneratia alba 
and Rhizophora mucronata

Bio1 °C 26.69 0.04 25.90 27.50

Bio12 mm 1,342.84 4.46 992.00 1869.00

Bio14 mm 17.00 0.15 7.00 49.00

Elv m 8.82 0.08 1.00 22.00

Tri m 2.60 0.06 0.12 2,479.80

Closed woodland Brachystegia speciformis, 
Julbernardia globiflora, Brachystegia 
microphylla, Erythrophleum 
africanum and Burkea africana

Bio1 °C 22.56 0.01 13.7 27.20

Bio12 mm 1,139.84 1.16 556.00 2,377.00

Bio14 mm 1.64 0.01 0.00 35.00

Elv m 1,040.06 2.00 14.00 2039.00

Tri m 29.96 0.16 0.38 248.12

Open woodland Combretum spp, Acacia spp, 
Commiphora spp, Lonchocarpus sp, 
Lannea spp and Terminalia spp

Bio1 °C 22.97 0.01 13.90 27.30

Bio12 mm 1,021.89 1.86 519.00 2,715.00

Bio14 mm 3.59 0.04 0.00 48.00

Elv m 942.05 3.54 10.00 2,276.00

Tri m 22.88 0.21 0.25 231.12

Thickets Pseudoprosopis fischeri, Combretum 
celastroids and Dicrostachys 
cinerea,

Bio1 °C 22.19 0.10 20.10 25.60

Bio12 mm 766.08 11.45 566.00 1,243.00

Bio14 mm 3.27 0.80 0.00 38.00

Elv m 1,160.47 28.57 106.00 1516.00

Tri m 8.78 0.67 2.38 45.38
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Specifically, we created a 5 x 5 km fishnet grid over the entire ex-
tent, to produce a single distribution point selected in each grid, with 
at least the distribution points be at 5 km apart. It was performed 
for each forest category separately to avoid eliminating too many 
observations from less extensive forest types, such as mangrove and 
montane forests. This procedure resulted in the selection of 1,307 
occurrence points (n = 103 montane, n = 276 lowland, n = 168 man-
grove, n = 378 closed woodland, n = 301 open woodland and n = 81 
thicket) that were considered to be spatially independent.

3.3 | Environmental variables

The selection of environmental variables was based on a conceptual 
model that encompasses factors deemed to control the presence, 
or in some cases, absence, of a particular species (Jiménez-Alfaro 
et al., 2018). In this instance, we based our variable selection on the 
parameters that control the physically based forest growth model 
3-PG (Physiological Principle in Predicting Growth) (Landsberg & 
Waring, 1997; White, Scott, Hirsch, & Running, 2006). 3-PG includes 
a large number of parameters, but we limited our selection to those 
parameters listed in Appendix 1 as Table A2.

Current and future bioclimatic variables were obtained from the 
KITE dataset (AFRICLIM) (https://webfi les.york.ac.uk/KITE/AfriC 

lim/ByCou ntry/Tanza nia/) (Platts, Omeny, & Marchant, 2015). 
Future climate data were ensemble mean downscaled to the res-
olutions (~ 1 km) using 18 pairwise combinations of five regional 
climate models (RCMs) driven by 10 general circulation models 
(GCMs). A detailed explanation about data downscaling is found 
in Platts et al., (2015). The ensembles were projected under two 
RCPs (RCP4.5 and RCP8.5) based on the Fifth Assessment Report 
(AR5) of the United Nations Intergovernmental Panel on Climate 
Change (IPCC). It represents independent trajectories on emis-
sions, socioeconomic and policy (Moss et al., 2010). RCP4.5 is an 
intermediate stabilizing pathway of the average 2041–2070 re-
ferred to as RCP4.5–2055, and it is the optimistic pathways with-
out an overshoot scenario at 4.5 W/m2 (~ 650 ppm CO2 eq.) by 
2,100 (Wise et al., 2009). It supports climate policies on reducing 
emissions, with moderate population and economic growth with 
reforestation programmes and increases areas of natural vege-
tation (Van Vuuren et al., 2011). RCP8.5 as a long term was the 
average of 2071–2100 referred to as RCP8.5–2085, and it is a pes-
simistic pathway with rising radiative forcing pathway leading to 
8.5 W/m2 (~1,370 ppm CO2 eq.) by 2,100 (Moss et al., 2010). This 
scenario assumes no policy change to reduce emissions, with high 
population growth, low-income, increased energy demand and 
deforestation, especially in the least developed countries (Hurtt 
et al., 2011; Riahi et al., 2011).

Other variables selected included those relating to terrain and 
soil characteristics. The Shuttle Radar Topography Mission (SRTM) 
1-arc second elevation data were obtained from USGS Earth 
Explorer to generate a terrain ruggedness index, a proxy measure of 
topographic heterogeneity (Riley, DeGloria, & Elliot, 1999). Soil char-
acteristic variables were obtained from the World Soil Information 
(ISRIC) (https://www.isric.org) included soil types (see Appendix 1 
as Table A1) (Hengl et al., 2015). A pairwise Pearson correlation (r) 
was used to test for collinearity between predicting variables, tak-
ing a relationship r > 0.7 or < −0.7 as highly correlated (Braunisch 
et al., 2013; Dormann et al., 2012) (see Appendix 1 as Table A3). 
Table 2 summarizes the general statistics of the selected bioclimatic 
and topographic profiles of forest types under current conditions 
based on the occurrence data used in this study.

TA B L E  3   Summary of predicted habitat suitability changes for the forest types (montane, lowland, mangrove, closed woodland, open 
woodland and thicket)

Pixel value

Predicted habitat suitability change DescriptionBaseline suitability Future suitability

0 0 Unsuitable (no change) Not suitable habitat at the current and future climate

0 1 Expansion (gain) Not suitable habitat at the current climate but may be 
suitable in the future climate

1 0 Contraction (loss) Suitable habitat at present but not in the future climate

1 1 Suitable (stable, no change) Suitable habitat at both, current and future climate

TA B L E  4   Model performance evaluation by AUC for the 
potential current distribution of forests using MaxEnt and a cloglog 
threshold for binary predictions. AUCDIFF = AUCtraining − AUCtesting

Forest type AUCtest AUCDIFF AUCSD

Cloglog 
threshold

Closed woodland 0.72 0.056 0.082 0.425

Open woodland 0.60 0.068 0.079 0.479

Montane 0.96 0.003 0.014 0.245

Lowland 0.93 0.007 0.021 0.325

Mangrove 0.97 0.000 0.005 0.521

Thicket 0.92 0.012 0.039 0.183

https://webfiles.york.ac.uk/KITE/AfriClim/ByCountry/Tanzania/
https://webfiles.york.ac.uk/KITE/AfriClim/ByCountry/Tanzania/
https://www.isric.org
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3.4 | Forest modelling

The modelling process focused on forest types (Table 1, Figure 2) 
based only on dominant tree species (Table 2). The inventory data 
adequately presented the distribution of forest types at different 
compositional gradients to predict suitable habitats for both current 
and future climate. The approach involves modelling forest types in-
dependently and then ensemble the results (Ferrier & Guisan, 2006). 
In this manner, we can predict the distribution of forest types in 
a grouped way based on the trait characters (D’Amen, Rahbek, 
Zimmermann, & Guisan, 2017). The method follows the assumption 
that similar populations group have the same response to the envi-
ronmental gradients based on the relative importance of environ-
mental predictors (Rose, Kennard, Moffatt, Sheldon, & Butler, 2016).

3.5 | MaxEnt modelling and calibration

MaxEnt software version 3.4.1 (Phillips, Anderson, Dudík, Schapire, 
& Blair, 2017) was used to model forest types at the national scale. 
The data (occurrence and environmental data) were prepared using 
QGIS 3.6 version (https://www.qgis.org) and the Remote Sensing 
and GIS software library (RSGISLib; Bunting, Clewley, Lucas, & 
Gillingham, 2014; https://www.rsgis lib.org/).

MaxEnt simulations were performed for each forest type using 
50 replicates with 10,000 randomly sampled pseudo-absence 
points. The maximum number of iterations was set to 1,000, while 
the convergence threshold was defined at 0.001, to enable each rep-
licate to converge within an acceptable time frame. Cross-validation 
was used to partition the 1,307 occurrence records for model cal-
ibration and evaluation purposes, whereby 75% of the occurrence 
records were used for model calibration while the remaining 25% 
retained for model validation. A regularization multiplier of one 
was used to limit model overfitting and enable the formulation of 
smooth response curves (Merow, Smith, & Silander, 2013). The log-
log (clog log) output format was selected based on a sampling design 
that typically reflects the presence of localities and abundance of 
each forest type per quadrant at the presence probability of 0.63 
(Phillips, 2005) and the location of occurrence is well estimated 
(Phillips et al., 2017). Jackknife resampling was used to examine the 
importance of each variable contribution to the potential distribu-
tion of vegetation types (Olivier, van Aarde, & Lombard, 2013).

3.6 | Construction of baseline and change maps

The final habitat suitability maps were generated by transforming 
the continuous probability values, ranged from 0 to 1 representing 
low and high probability, respectively, to discrete values of being 
either suitable or not suitable for the baseline. Following Spiers, 
Oatham, Rostant, and Farrell, (2018), the 10th-percentile training 
presence threshold was used to define suitable and unsuitable habi-
tat for current and future projections. The future predicted habitat 

is calculated, for each forest type and taken as the difference be-
tween the baseline model and the future models to generate change 
maps (Maharaj & New, 2013) at RCP4.5 and RCP8.5, respectively, 
and presented with four predicted habitats of unsuitable, suitable, 
expansion and contraction (Table 3).

3.7 | Model performance evaluation

The models were evaluated using the qualitative statistic for the area 
under the curve (AUC) of the receiver operating characteristic (ROC) 
curves of the test data for the predicted mean accuracy model out-
put for each forest type (Fielding & Bell, 1997; Merow et al., 2013). 
Model overfitting was quantified using AUCDIFF = AUCtraining 

− AUCtesting (Warren & Seifert, 2011) with excellent model perfor-
mance when AUCDIFF is close to 0 (Bosso, Febbraro, Cristinzio, Zoina, 
& Russo, 2016).

3.8 | Baseline model accuracy assessment

AUC values have received criticism as they are vulnerable to over-
inflation of model performance where spatial autocorrelation exists 
within the model variables and where a modelled habitat niche is 
small relative to the extent of the modelled area (Williams Cross, 
Crump, Drost, & Thomas, 2015). To alleviate these issues, we con-
ducted an independent measure of model accuracy using the forest 
tree species data, removed during spatial rarefication process, in-
cluding a total of 57,901 points. The agreement was quantified using 
three metrics: 1) overall % accuracy and associated confidence inter-
val (CI) (Olofsson et al., 2014; Pontius & Millones, 2011), 2) F1 score 
index which depicts the harmonic mean among precision (p) and 
recall (r) for each class (Sofaer, Hoeting, & Jarnevich, 2019) and 3) 
Matthews correlation coefficient (MCC), which is explained in terms 
of true positive (TP), true negative (TN), false positive (FP) and false 
negative (FN) (Boughorbel, Jarray, & El-Anbari, 2017).

4  | RESULTS

4.1 | Model performance and habitat suitability 
estimation

Mean test AUC score demonstrated a high degree of accuracy 
(AUC > 0.9) for modelling the suitability of montane, lowland, man-
grove forest and thicket (Table 4, Figure 3a-c, Figure 4). Closed 
woodland also showed a good level of accuracy (AUC = 0.72) 
(Table 4, Figure 5a). The relatively low standard deviation in AUC 
(ranged from 0.005 to 0.082) demonstrated a degree of model 
stability (Table 4). The model for open woodland calibrated in-
adequately (AUC = 0.6) (Table 4, Figure 5b). This result was ex-
pected since open woodlands are dynamic with unconstrained 
habitat niche, leading to a great deal of overlap with other forest 

https://www.qgis.org
https://www.rsgislib.org/
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F I G U R E  3   Predicted potential suitable habitat distribution area for (a) montane, (b) lowland forest and (c) thicket under current and 
future climate scenarios in Tanzania. EPSG: 4,326, WGS84 projection
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communities, especially closed woodland, lowland and thicket. The 
results of the accuracy assessment using independent dataset also 
indicated a good level of agreement. A mean overall accuracy of 
90% ranging from 85% to 97%, F1 score of 0.9 (range of 0.84 to 
0.98) and an MCC mean value of 0.83 ranging from 0.75 to 0.95 
(Table 5) were attained. Therefore, the accuracy metrics indicated 
that the models are reliable to explain the potential habitats of 
the forest types and can adequately reflect their distribution in 
Tanzania in the present and future time. The main source of confu-
sion occurred along the boundaries between forest types. These 

transitional zones rarely occur as sharp boundaries and are there-
fore likely to include a mix of forest types.

4.2 | Variables importance to each model

Precipitation and temperature (mean annual precipitation, rainfall 
driest month and mean annual temperature) (Table 6) were the main 
determinants for explaining the current and future distribution of the 
forest types in Tanzania. However, non-climatic variables reflecting 

F I G U R E  4   Predicted potential suitable habitat distribution area for mangrove forest under current and future climate scenarios in 
Tanzania (a) northern coastline of Tanzania (b) southern coastline of Tanzania. EPSG: 4,326, WGS84 projection
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F I G U R E  5   Predicted potential suitable habitat distribution area for (a) closed woodland, (b) open woodland and under current and future 
climate scenarios in Tanzania. EPSG: 4,326, WGS84 projection

(a)

(b)
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the topographic (elevation and terrain ruggedness) and soil con-
straints the distribution of these forest types, especially mangrove 
forest on the flat coastal plains. For example, removing elevation for 
the mangrove model resulted in a shift from the known areas of the 
mangrove occurrences to inland lakes and rivers.

4.3 | Predicted forests habitat distribution

The climate change scenarios indicate a projected change of suitable 
habitat for most forest communities (Tables 7 and 8). Montane for-
ests, located on moderate-to-high altitude, are predicted to suffer 
a loss of more than 47% in suitable habitat extent by 2085 under 
even the most optimistic emission scenario (RCP4.5), and losses of 
64% under a high emission scenario (RCP8.5). Thicket forests are 
predicted to lose more than 70% of its habitat under the high emis-
sion scenario (RCP8.5) by 2085. Mangrove forests are predicted to 
increase by 40% at both emission scenarios (RCP4.5 and RCP8.5). 
Lowland forest habitat, occurring in a mosaic with montane and 
woodland is predicted to have lost a suitable habitat of more than 
10% by 2085 (RCP8.5). Woodland vegetation, the most geographi-
cally extensive forest type in Tanzania, is predicted to lose approxi-
mately 5% of its suitable habitat by 2085. Projected change maps 
(Figures 6, 7 and 8) present the anticipated changes in the forest 
suitable habitats from the projected baseline to the future climate 
in Tanzania.

5  | DISCUSSION

5.1 | Predicted forests habitat change

We assessed the impact of climate change on forests extent in 
Tanzania using national forest inventory data (Tomppo et al., 2014). 
Our results indicate that climate change will affect all forest habitats 
suitability across Tanzania. The results reveal that climate change 
will threaten forests at various scales: forests with a narrow geo-
graphical range occurring at high altitude (i.e. montane forests) will 
experience more loss of their current habitat in the future. This 
may be associated with fragmented strips of montane forests, and 
particularly high endemism has increased a great sensitivity to cli-
mate change (Foster, 2001). Moreover, future climate change will 

extensively threaten microhabitat forests (i.e. thickets) occurring in 
a semi-arid climate (Moncrieff, Scheiter, Slingsby, & Higgins, 2015). 
These projections indicate that climate change, especially tempera-
ture rise, will accelerate habitat loss of already vulnerable forests 
such as thickets (Chidumayo et al., 2011). Mangrove forests are pre-
dicted to expand their current range as a response to climate change 
(Godoy & Lacerda, 2015), although the future extent shift is more 
likely to be driven by sea-level rise, which was not factored, into the 
present study (Alongi, 2008).

5.2 | Potential suitable habitat impacted

The loss of suitable habitat for the montane forest is projected to 
be extensive, with losses exceeding 40% even under the optimis-
tic RCP4.5 scenario by 2055 (Tables 7 and 8). This predicted loss is 
particularly pronounced in the high biodiversity areas of the Eastern 
Arc Mountains, a foothill of Rungwe and Livingstone mountain 
range along Lake Nyasa (Figure 6a). A projected reduction in rainfall 
results in a contraction of montane forests to higher elevations, il-
lustrated by the projected loss of montane forest communities at 
lower elevations around Mount Kilimanjaro. The isolated nature of 
these montane habitats, sometimes termed “forest islands” (Fjeldså, 
1999), form essential refugia for several species including 15 mam-
mal species identified as vulnerable or high-risk status within the 
Udzungwa Mountains (Rovero et al., 2006). Forest loss in montane 
regions has severe implications for wildlife migration as these for-
ests provide vital corridors linking reserves in Ruaha to the Selous 
Game Reserve via the montane forests of the Udzungwa Mountains 
(Jones et al., 2012). Additionally, loss of suitable habitat for forests 
in these regions is likely to increase sediment supply within the Rufiji 
basin, affecting downstream wetland dynamics and water resources 
(Ochieng, 2002).

Rising temperatures and reduced rainfall during the dry season 
are projected to result in losses of suitable lowland forest habitat 
above 10% by 2085 (Table 8). Given the extent of lowland forest in 
Tanzania, the effects of this loss have broad-reaching implications, 
including reduced landscape connectivity impacting wildlife migra-
tions (Ntongani, Munishi, & Mbilinyi, 2010). Projected losses are par-
ticularly pronounced in the southeast of the country in the regions 
of Ruvuma, Mtwara and Lindi (Figure 6b), which provides an exten-
sive trans-boundary wildlife corridor between the Selous and Niassa 
(Mozambique) game reserves. Lowland forest communities in this 
area mosaic with one of the World's largest miombo woodland eco-
systems with a projected decline of above 4% (Tables 7 and 8) pro-
viding migratory routes for a number of species including the largest 
populations of elephants, as well as globally significant populations 
of Roosevelt's sable antelope, Liechtenstein's hartebeest, Nyasa wil-
debeest, eland, greater kudu and carnivores including African wild 
dog, lion and leopard (Hofer et al., 2004). Conversely, a small de-
gree of expansion of woodlands (closed and open) is projected into 
wetter areas, for instance, into the Lake Tanganyika, Victoria and 
Pangani basin (Figure 7). However, there are predicted severe losses 

TA B L E  5   Summary of the accuracy metrics: overall accuracy, F1 
score and MCC

Forest type Overall Accuracy F1 score MCC

Montane forest 0.943 ± 0.014 0.93 0.88

Lowland forest 0.925 ± 0.010 0.92 0.85

Mangrove forest 0.976 ± 0.006 0.98 0.95

Closed woodland 0.879 ± 0.002 0.88 0.75

Open woodland 0.852 ± 0.003 0.84 0.77

Thicket 0. 894 ± 0.039 0.89 0.78
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(over 40% by 2085 even under optimistic conditions) (Table 8) in 
suitable habitat for thickets in central and north-eastern Tanzania 
in the regions around Singida, Dodoma and Manyara (Figure 6c). 
Habitat fragmentation and reduced ecological resilience are antic-
ipated, impacting the vital ecosystem for several game reserves and 
national parks with regionals and even global significance, includ-
ing Mkungunero, Swagaswaga, Muhezi, Rungwa, Maswa, Mkomazi, 
Saadani, the Serengeti national park ecosystem and bee reserves 

in Manyoni District. These forest communities represent vital hab-
itats for fauna such as birds, small browsers and larger animals such 
as rhinoceros, particularly in dry regions where thickets represent 
the only closed-canopy habitat (Medley & Hughes, 1996; Sharam, 
Sinclair, & Turkington, 2006).

Mangrove forests represent a valuable economic resource for 
local communities as well as maintaining the seascape. Importantly, 
mangrove forests play an essential role in carbon storage (natural 

TA B L E  6   Independent variables and their explanatory contributions to the distribution of the forests. It indicates habitat suitability 
changes within the range of the predictor variables. See Appendix 1 as Table A1 for a definition of the soil types

Forest type Variable name Unit % Mean SD Min. Max.

Montane Rainfall driest month mm 59.8 14.80 0.64 0.00 66.00

Terrain ruggedness m 14.1 92.11 1.94 8.38 229.88

Soil type (Nitisols, Histosols,) - 8.6 - - - -

Potential evapotranspiration mm 8.1 1,387.70 127.69 1,051.00 1791.00

Mean annual temperature °C 6.2 17.01 0.10 10.40 26.10

Annual moisture index - 1.2 90.74 22.51 47.00 209.00

Mean annual rainfall mm 1.0 1,247.61 10.72 850.00 2,686.00

Elevation m 0.5 1,760 19 235 3,039

Rainfall wettest month mm 0.4 232.18 65.15 143 514.00

Lowland Rainfall driest month) mm 49.8 11.20 0.33 0.00 56.00

Elevation m 21.7 363.32 7.34 9.00 2,377.00

Terrain ruggedness m 12.5 36.40 1.20 1.12 279.25

Soil type (Arenosols, Fluvisols) - 4.6 - - - -

Mean annual rainfall mm 4.3 1,219.44 6.47 610.00 2,735.00

Potential evapotranspiration mm 3.3 1606.03 111.83 1,385 1787

Annual moisture index - 1.5 76.46 19.83 48.00 130.00

Mean annual temperature °C 1.2 24.72 0.04 15.00 27.30

Rainfall wettest month mm 1.1 223.05 58.65 150.00 405

Mangrove Mean annual temperature °C 21.0 26.69 0.04 25.90 27.50

Elevation m 72.0 8.82 0.08 1.00 22.00

Soil type (Solonchanks, Arenosols) - 2.8 - - - -

Terrain ruggedness m 2.5 2.60 0.06 0.12 2,479.80

Potential evapotranspiration mm 1.3 1502.64 67.23 1,388.00 1791.00

Rainfall wettest month mm 0.3 297.59 66.62 154.00 467.00

Mean annual precipitation mm 0.1 1,342.84 4.46 992.00 1869.00

Annual moisture index - 0.0 89.93 13.77 56.00 135.00

Rainfall driest month mm 0.0 17.00 0.15 7.00 49.00

Closed 
woodland

Mean annual precipitation mm 40.0 1,139.84 1.16 556.00 2,377.00

Terrain ruggedness m 14.2 29.96 0.16 0.38 248.12

Rainfall wettest month mm 11.7 215.98 48.38 111.00 359.00

Mean annual temperature °C 9.0 22.56 0.01 13.7 27.20

Elevation m 7.1 1,040.06 2.00 14.00 2039.00

Soil type (Acrisols, Ferralsols) - 7.1 - - - -

Rainfall driest month mm 6.8 1.64 0.01 0.00 35.00

Potential evapotranspiration mm 2.5 1626.70 14.65 1,365 1869

Annual moisture index - 1.6 71.87 17.65 40 126

(Continues)
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carbon sinks), capturing CO2 from the atmosphere and store it in 
their biomass than terrestrial trees (Alongi, 2012; Ray & Jana, 2017). 
Under projected climate change scenarios, habitats suitable for man-
grove forests are predicted to expand their range by 40% (Tables 7 
and 8) at both low and high emissions (Figure 8). It is chiefly due 
to rising temperatures and subsequent evaporation, coupled with 
reduced annual rainfall totals leading to increased salinity, a favour-
able condition for mangrove ecosystem (Alongi, 2015). Therefore, 
an increase in temperature would be positive to the mangrove eco-
system as more accelerated growth, changes in community compo-
sition, diversity and latitudinal expansion (Alongi, 2015; Hanebuth, 
Kudrass, Linstädter, Islam, & Zander, 2013). Similarly, a rise in sea 
level influenced by future climate change is expected to alter man-
grove forests significantly as they are susceptible to any shift in sea 
level (Alongi, 2008; Crase, Vesk, Liedloff, & Wintle, 2015). The rel-
ative sea-level rise may cause landward retreat in mangrove forests 
supported by sediment composition on the upland habitat (Godoy & 
Lacerda, 2015).

5.3 | Implications for forests conservation planning

A dramatic decline in the projected extent of Tanzanian forests over 
the next 50 years is expected to be driven by regional and national 
climatic factors. Our study, therefore, identifies a tractable method 
of using existing forest inventory data to predict the distribution of 
future habitats capable of sustaining forest ecosystems in spite of 
the challenges posed by future climate change. Information on forest 
extent and change of this nature can directly inform schemes such 

as the Clean Development Mechanism (CDM) and REDD+ (Pelletier 
& Goetz, 2015) as an incentive and alternative plans to reduce pres-
sure to the remaining suitable forest habitats and enhance forest 
conservation, sustainable forest management and enhancement of 
forest carbon stocks and payment of ecosystem services (Romijn 
et al., 2012).

The habitat modelling procedure demonstrated that climate 
has a substantial control on the distribution of Tanzanian forest 
communities. As a result, even under an optimistic climate change 
scenario (RCP4.5), forest communities in Tanzania are projected 
to decrease in an immense range. Notably, montane forests of 
Tanzania are globally significant in terms of biodiversity (Fjeldså, 
1999; Jones et al., 2012; Rovero et al., 2006), yet they are pro-
jected to halve in extent by 2085. Although forest communities 
like closed, open woodland, and mangrove forest may expand into 
other regions in response to climate change, montane forests are 
constrained by elevation and therefore show particular vulnera-
bility to changes in temperature. As such, montane species may 
well act as a barometer for regional climate change (e.g. Kimball & 
Weihrauch, 2000). Focusing on monitoring efforts in these regions 
may be vital in identifying changes in forest composition and bio-
diversity in response to climate change, in the hope that this can 
steer policy before we reach a crucial tipping point. For instance, 
through efforts like the African Forest Landscape Restoration ini-
tiatives (FLR) with a target of restoring 100 million hectares of 
deforested and degraded landscape across Africa by 2030 (Mills 
et al., 2015).

Other more direct anthropogenic factors compound the threat 
from climate change as these forest communities undergo extensive 

Forest type Variable name Unit % Mean SD Min. Max.

Open 
woodland

Rainfall driest month mm 41.7 3.59 0.04 0.00 48.00

Terrain ruggedness m 27.0 22.88 0.21 0.25 231.12

Soil type (Ferralsols, Gleysols) - 18.2 - - - -

Mean annual precipitation mm 8.3 766.08 11.45 566.00 1,243.00

Annual moisture index - 1.7 62.44 15.87 24.00 114.00

Elevation m 1.3 942.05 3.54 10.00 2,276.00

Rainfall wettest month mm 0.9 187.25 44.80 66.00 308.00

Potential evapotranspiration mm 0.5 1657.27 101.82 1,409.00 1,890.00

Mean annual temperature °C 0.3 22.97 0.01 13.90 27.30

Thicket Mean annual precipitation mm 32.5 766.08 11.45 566.00 1,243.00

Soil type (Acrisols and Arenosols) - 27.3 - - - -

Terrain ruggedness m 13.1 8.78 0.67 2.38 45.38

Rainfall driest month mm 12.3 3.27 0.80 0.00 38.00

Rainfall wettest month mm 7.4 144.09 17.03 114.00 219.00

Annual moisture index - 6.2 44.93 7.91 32.00 75.00

Potential evapotranspiration mm 0.9 1707.40 55.27 1,580.00 1891.00

Elevation m 0.1 1,160.47 28.57 106.00 1516.00

Mean annual temperature °C 0.1 22.19 0.10 20.10 25.60

TA B L E  6   (Continued)
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F I G U R E  6   Predicted spatial changes in the potential habitat distribution area based on the thresholds provided in Table 4 for (a) montane 
(b) lowland forest (c) thicket under current and future climate scenarios. EPSG: 4,326, WGS84 projection
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felling for building material and charcoal production, as well as in-
creasing frequency of forest fires (Sharam et al., 2006). These for-
est habitats extend across approximately half of Tanzania, and 
habitat degradation or loss of this magnitude can have serious 
implications, particularly in terms of loss of carbon sink (Makundi 
& Okiting'ati, 1995) and their role in wildlife migratory patterns: 
projected losses coincide with wildlife corridors with regional sig-
nificance such as the Selous-Niassa, Udzungwa-Ruaha and Muhezi-
Swagaswaga migratory routes (Hofer et al., 2004; Medley & 
Hughes, 1996; Sharam et al., 2006).

5.4 | Limitations of the study

This study adopted a widely accepted methodology (e.g. Elith 
et al., 2006; Lim et al., 2018; Merow et al., 2013) that facilitates mapping 
of forests habitat suitability and their alteration due to climate change; 
however, it suffers from the same limitations associated with known 
uncertainties of the data and climate models (e.g. Watling, Brandt, 
Mazzotti, & Romañach, 2013). Similarly, the forest habitats prediction 
focused at a county level, and therefore, our results should be inter-
preted at the national scale rather than a regional or small local scale.

F I G U R E  7   Predicted spatial changes in the potential habitat distribution area based on the thresholds provided in Table 4 for (a) closed 
woodland (b) open woodland under current and future climate scenarios. EPSG: 4,326, WGS84 projection
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F I G U R E  8   Predicted spatial changes in the potential habitat distribution area of mangrove under current and future climate scenarios based 
on the thresholds provided in Table 4: (a) northern coastline of Tanzania (b) southern coastline of Tanzania. EPSG: 4,326, WGS84 projection

(a)

(b)
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5.5 | Future research perspectives

Future simulations should consider using the information on the 
spatial pattern of change, such as proximity (distance rasters) to 
urban centres and road networks, and density rasters of projected 
population growth (population data surface). Construction of road 
networks across forests is likely to trigger increased forest deg-
radation and fire incidences that in turn are expected to alter re-
gional climate (Fonseca et al., 2019; Nepstad et al., 2001). Future 
work also should explicitly consider the impact of sea-level rise 
and geomorphology on Tanzanian mangroves to fully understand 
how these essential habitats might change as a result of climate 
change.

5.6 | Conclusions

Climate change will alter Tanzanian forests by accelerating 
habitat loss, fragmentation and hence reducing ecological con-
nectivity. The effect of forest fragmentation will compromise 
the potential plant pollinators’ movement and seed dispersal. 
The induced fragmentation is especially severe when essential 
wildlife corridors, such as riparian zones that connect different 
areas of the landscape, are impacted. The optimal management 
solution in this regard is to increase ecological connectivity in 
current forest planning and management. Ecological connectiv-
ity should be maintained in habitats that are predicted not to 
change and expand under future climate change by preserving 
native forests and, where possible, protect the remaining forest 
areas from other anthropogenic disturbances. Improving ecologi-
cal connectivity would significantly enhance not only sustainable 
forest management but also improve the design and implementa-
tion of forest projects and programmes. For example, ecological 
connectivity in forests will improve wildlife movement. This is 
more prominent for the dispersed population of large mammals 
(e.g. elephants) (Ntongani et al., 2010), when enclosed, increase 
the destructions of the highly diverse forest habitats (Ripple 
et al., 2015). Therefore, increasing forest connectivity will en-
hance the natural resilience of the remaining forests to the pre-
dicted effects of climate change. Consequently, the findings call 
for conservation planning in different dimensions: improve man-
agement of the existing protected areas which can absorb the 
impact of climate change, but also expanding to newly suitable 
areas with effective land use planning, conservation and land 
reclamation.
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APPENDIX 1

TA B L E  A 1   Summary of dominant soil groups in Tanzania (Batjes, 2004)

Code Major soil group Descriptions

1 Acrisols Strongly weathered acid soils, with low base saturation

2 Andosols Black soils of volcanic landscapes, rich in organic matters

3 Arenosols Sandy soils with limited soil development, under scattered (mostly grassy) vegetation to very old plateaus of 
light forest

4 Cambisols Weakly to moderately developed soil soils occurring from seal level to the highlands and under all kind of 
vegetation (savanna woodland and forests)

5 Chernozems Black soil rich in organic matter, occurring in flat to undulating plains with forest and tall grass vegetation

6 Ferralsols Deep, strongly weathered, physically stable but chemically depleted

7 Fluvisols Associated with important river plains, periodically flooded areas

8 Gleysols Temporary or permanent wetness near soil surface, support swamp forests or permanent grass cover

9 Histosols Peat and muck soils with incompletely decomposed plant remains

10 Leptosols Shallow soils over hard rock/gravel, at medium to high altitude landscapes, suitable for forestry and nature 
conservation

11 Lixisols Strongly weathered and leached, finely textured materials support natural savanna or open woodland 
vegetation

12 Luvisols Common in flat or gently sloping land with unconsolidated alluvial, colluvial, aeolian deposits in cooler 
environments and young surface

13 Nitisols Deep, red, well-drained tropical soils with a clayey, well defined nut-shaped peds with shiny surface. Found in 
level to highland under tropical rain forest or savanna vegetation

14 Phaeozems Dark soils, rich in organic matter. Occur on flat to undulating land in a warm to cool (tropical highland). 
Support natural vegetation with tall grass steppe and or/forest

15 Planosols Clayey alluvial and colluvial deposits and support light forest or grass vegetation

16 Regosols Contain gravelly lateritic materials (murrum) with low suitability for plant growth

17 Solonchanks Occur in seasonally or permanently water logged areas with grasses and/or halophytic herbs

18 Solonetz Associated with flat lands in a hot climate, dry summers, coastal deposit. Contain a high proportional of 
sodium ions

19 Vertisols Contain sediments with a high proportion of smectite clay, high swelling and shrinking of results in deep 
cracks during dry season. Climax vegetation is savanna, natural grass and/or woodland

20 Water body -
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TA B L E  A 2   Environmental variables are based on the 3-PG model; bold abbreviated variables are used in the final model after testing for 
collinearity using a pairwise Pearson correlation

Variable name Explanation Unit

PET seasonality (PETseason) Monthly variability in potential evapotranspiration mm/month

PET Warmest Quarter (PETWarmQ) Mean monthly PET of warmest quarter mm/month

PET wettest quarter (PETWetQ) Mean monthly PET of wettest quarter mm/month

Thermicity index (ThermicitI) Sum of mean annual temp., min. temp. of the coldest month, max. temp. of the coldest 
month, x 10, with compensations for better comparability across the globe

°C

Elevation (Elv) Height above or below sea level m

Terrain ruggedness index (Tri) Calculates the difference in elevation values from a centre cell and the eight cells 
immediately surrounding it

m

Topographic wetness index (TopoWet) This quantifies topographic control on the hydrological process -

Soil water availability capacity 
(SoilwaterA)

Plant available water holding capacity (v%) of the soil mm

Soil types (ST) Characterized by a variety of textures and nutrients -

Potential evapotranspiration (PET) Amount of evaporation taking place when sufficient water is available mm

Mean annual temperature (Bio1) The average temperature for each month °C

Mean annual rainfall (Bio12) This is the sum of all total monthly precipitation values mm

Rainfall wettest month (Bio13) This index identifies the total rainfall that prevails during the wettest month mm

Rainfall driest month (Bio14) This index determines the total precipitation that prevails during the driest month mm

Annual moisture index (Mi) Mean annual rainfall/Potential evapotranspiration -
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