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Abstract
Disturbances, both natural and anthropogenic, are critical determinants of forest structure, function,
and distribution. The vulnerability of forests to potential changes in disturbance rates remains largely
unknown. Here, we developed a framework for quantifying and mapping the vulnerability of forests
to changes in disturbance rates. By comparing recent estimates of observed forest disturbance rates
over a sample of contiguous US forests to modeled rates of disturbance resulting in forest loss, a novel
index of vulnerability, Disturbance Distance, was produced. Sample results indicate that 20% of
current US forestland could be lost if disturbance rates were to double, with southwestern forests
showing highest vulnerability. Under a future climate scenario, the majority of US forests showed
capabilities of withstanding higher rates of disturbance then under the current climate scenario,
which may buffer some impacts of intensified forest disturbance.

While climate attributes such as temperature and pre-
cipitation are principal determinants of the distribution
of the world’s ecosystems (i.e. tundra vs. forestland),
natural disturbances suchasfire,wind, andother events
can also influence the distribution and properties of
ecological systems [1]. Within forested ecosystems,
disturbance influences forest structure, function and
composition, and thus the ecosystem services they pro-
vide [2–5]. Recent studies have highlighted changes
in natural disturbance regimes compared to historic
norms and the potential for further alterations in dis-
turbance regimes from future climate change on a scale
unprecedented in historic records [6–13]. These stud-
ies lead to a key question: What levels of disturbance
can forests tolerate before they face critical alterations in
structure and function and how might their sensitivity
to disturbance change under future climate?

While field studies that characterize and/or simu-
late the impact of disturbance continue to be vital to
our understanding of changing disturbance impacts to
forested ecosystems, it is difficult and often impractical

to extend these studies to continental and centen-
nial scales [14, 15]. Thus, process-based prognostic
models that can simulate events over larger areas
and temporal scales have been used to advance
our understanding of regional to global ecosystem
dynamics. Previous studies have explored a range
of topics such as the modification of global vegeta-
tion in a world without fire, to the potential impacts
of large-scale deforestation in Tropical and Boreal
regions, to the dependence of future climate mitiga-
tion stategies on the future rate of natural disturbance
rates [1, 16–18].

Given the critical roles disturbance plays in shaping
forest structure, function, and dynamics, we propose a
framework to assess ecosystem vulnerability to distur-
bances. Specifically, we sought to address the following
questions: (1)What is themaximumrateof disturbance
for which current forests can be maintained across the
US?; (2) How close are current forests to a fundamental
shift in ecosystem structure?; and, (3) How may forest
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Figure 1. Conceptual diagram of Disturbance Distance (D). Given unique environmental growing conditions, forests tolerance to
disturbance (𝜆∗ x-axis) varies from low in areas with poor growing conditions (site-1 and 2) to high in areas with favorable growing
conditions (site-3 and 4). At the same time forests sites vary in the actual rates of disturbance experienced (𝜆) from relatively lower
rates of disturbance (sites 1 and 4) to higher rates (sites 2 and 3). Subtracting actual rates of disturbance from an ecosystems threshold
rate gives an indication of the additional amount of disturbance a forest can tolerate (D) before a transition to non-forest occurs.

ecosystem sensitivity to disturbance change under a
potential future climate change scenario?

Forest vulnerability to disturbance was determined
by developing a simple and flexible framework. First,
ecosystemresponses todisturbance are evaluatedunder
representative climatic and environmental conditions
to determine threshold rates of disturbance (𝜆∗), the
rates that lead to fundamental alterations of vegeta-
tion structure (i.e. transition from forest to non-forest
based on criteria of plant structure, composition and
biomass). While forests with favorable growing con-
ditions recover faster and can thus tolerate higher
disturbance, the same level of disturbance on a site
with poor growing conditions can be enough to tip the
land into a different ecosystem type [19]. Next, esti-
mates of actual forest disturbance rates (𝜆) are acquired
over forested regions. Comparing these observed rates
of disturbance to the estimated threshold rates pro-
vide estimates of how much additional disturbance
an ecosystem may tolerate before a transition thresh-
old is reached, herein termed Disturbance Distance
(equation (1))

𝐷 = 𝜆
∗ − 𝜆. (1)

A region’s Disturbance Distance, D, gives insight
into its vulnerability to potential increases in distur-
bance intensity (figure 1).

In this report, threshold disturbance rates (𝜆∗) for
which forest conditions could be maintained across
the contiguous US were estimated by simulating
potential vegetation growth and dynamics under

varying disturbance rate scenarios in an advanced
mechanistic and prognostic ecosystem model [20] (see
methods supplement available at stacks.iop.org/ERL/
12/114015/mmedia). Following previous studies
[3, 21] the forest threshold definition used here,
required the maintenance of forest plant functional
types and an above ground standing stock of natu-
ral cover equivalent to 2 kgC m−2 or greater. While the
individual-based mechanistic model was chosen in part
due to its capabilities to incorporate sub-models of dis-
turbance that may allow future studies of disturbance
interactions and feedbacks [3, 22], to isolate the aver-
age disturbance rate leading to non-forest conditions,
all sub-models were turned off and annual disturbance
rates were held constant in time and space within
each model run. The modeled-based results of this
simplified disturbance case study indicate that forests
in southeastern US can maintain the highest rates of
disturbance before non-forest conditions are reached,
while southwestern forests were estimated to have the
lowest disturbance rate thresholds (figure 2).

To estimate how far current forests may be from
a transition to non-forest, threshold rates of distur-
bance (𝜆∗) were compared to remotely sensed derived
estimates of disturbance over 50 US forested Land-
sat scenes representative of major forest types [23].
The observed average annual disturbance rates (𝜆),
measured as the percent of live forest cover loss
persisting 2 or more years between 1986–2010, ranged
from 0.4%−3.8% yr−1 with a national average of 1.4%
yr−1 (figure 2, figure S1). Over these same forested
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Figure 2. Top panel shows the geographic variation in estimated threshold disturbance rates, (𝜆∗) (% yr−1), under 20th century
climate conditions, overlaid by mean annual observed disturbance rates, (𝜆) (% yr−1) at 50 NAFD sample forested regions from Masek
et al 2013. The Disturbance Distance (D), or increase in mean observed disturbance rates (𝜆) that would lead to non-forest conditions
for the 50 sample forest regions is shown in the bottom panel. An independent layer of tree cover percent provides spatial reference of
current forest distribution.

scenes, under 20th century climate conditions, aver-
age threshold rates of disturbance (𝜆∗) ranged from
∼1.5%−12% yr−1 (figure 2). In general, Disturbance
Distances were estimated to be much smaller across
western forests (west of 100 W) with nearly half the
western sites estimated to transition to non-forest if an
additional 2% of forest area was disturbed annually,
while only one eastern forested site showed this same
vulnerability (figure 2, figure S2). In a scenario where
current disturbance rates double, and assuming the 50
Landsat scenes are representative of US forests, ∼20%
or 51 million hectares of forests would be exposed to
disturbance-induced transitions to non-forest ecosys-
tems (figure 4, figure S3), while the timing of transition
will vary in part due to rate of disturbance and recovery.

Vegetation growth and response to disturbance will
change under future climate conditions. To evaluate
how forests’ sensitivity to disturbance may change in
the future, the threshold rates of disturbance were
estimated under a representative future climatology
from the North American Regional Climate Change
Assessment Program (NARCCAP) which is based off

the IPCC A2 emissions scenario [24] (see methods
supplement). The estimated thresholds rates under
the future climate scenario, were again compared to
the remotely observed disturbance rates, to estimate
forests’ Disturbance Distance under a future climate
scenario. The resulting Disturbance Distances (D) were
higher over the majority of sites (figure 3), suggest-
ing an overall decrease in vulnerability to increased
disturbance rates under this specific future scenario.
Only 15% of all sampled forest scenes showed a decline
in tolerance to disturbance, and the share of forests
susceptible to loss if current disturbance rates were to
double was reduced by ∼50% (figure 4, figure S4). The
southern California site stands out as an extremely vul-
nerable outlier, as the disturbance distance was slightly
negative under 20th century climate and decreased fur-
ther in the future scenario. Conversely, northwestern
forests showed the largest potential to decrease vulner-
ability under the future climate scenario. Overall, we
estimated the majority of US forests will be able to tol-
erate higher rates of disturbance under a future climate
scenario than under a contemporary climate (figure 4).
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Figure 3. Change in threshold rates estimated under a future A2 climate scenario across the US are overlaid with the corresponding
increase in observed mean disturbance rates (1986−2010) that would lead to non-forest conditions for the 50 sample forest regions
under the future climate scenario (D).

Figure 4. Estimated US forest loss under current (blue) and future (red) climate conditions, when exposed to a range of disturbance
rates. Estimates of loss are bounded by the upper and lower growing conditions (dotted lines) within the Landsat scenes.

Projected changes in future climate and distur-
bance regimes have heightened the need for continued
research on forest disturbance and ecosystem response
monitoring and modeling capabilities. Here we used an
advanced ecosystem model to estimate a novel metric,
disturbance rate threshold, which measured the high-
est rates of disturbance that can be tolerated before
non forest conditions persist across the diverse climatic
and edaphic gradients found within the continental
US. Comparing this metric to measured rates of for-
est disturbance across the US quantified patterns of
forest vulnerability to altered rates of disturbance.
This study thus provides a preliminary baseline and
flexible framework that can be applied to additional

regions and adapted to specific research objectives.
Our case study focused on transitions to non for-
est, but before non forest conditions are met changes
in disturbance rates are likely to cause other impor-
tant structural and functional ecological modifications
such as changes in species composition, carbon
sequestration potential, basal area, and forest height
[14, 15, 19, 25–27]. This framework could provide
guidance on management interventionto ease the tran-
sition to new and better adapted forest states [28],
and may identify areas that have not been historically
defined as forests, but have the potential to sustain
them if disturbances such as grazing and/or fire were
suppressed below critical threshold rates [1 , 29].
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This case study highlights the differences in for-
est vulnerability to altered disturbance rates across
the US. Results show most forested regions can with-
stand higher disturbance rates than the average rates
detected by remote sensing and that most US forests
will be able to withstand higher rates of disturbance
in the future. Many complex and non-linear inter-
actions between climate, soils and atmospheric CO2
concentrations effect vegetation growth, mortality and
competition [11, 30–32]. Thus as climate and edaphic
conditions vary across the US so do the variance in
the magnitude and direction of change in vulnerabil-
ity to disturbance. In particular, this study suggests
some forested areas, particularly water-limited areas
of the western US, could become more vulnerable
to increases in disturbance rates under an IPCC A2
climate scenario. This finding is aligned with several
recent papersdocumenting increasedmortality inwest-
ern forests arising from decreased water availability
driven by warmer and drier conditions [9, 13, 33]. The
finding that the majority of the contiguous US forests
may become less vulnerable to disturbance under a
future climate scenario coincides with previous studies
that have shown enhanced productivity stimulated by
increases in CO2 and temperature [34–36], although
sustained enhancement of vegetation to CO2 has been
questioned [37–39]. Our study does not attempt to
project what future disturbance rates will be and it
is very conceivable that disturbance rates (i.e more
frequent fires, intense storms and pest and pathogen
outbreaks) could increase at levels that limit any pro-
jected gains in recovery potential from climate change
[6, 10–12, 40]. Currently beyond the scope of our
present study, we suggest incorporating more distur-
bance and climate change scenarios into the modeling
framework, to better quantify the range of vegeta-
tion response to altered disturbance and encourage
continued model inter-comparisons to test vulnera-
bility under a range of ecological assumptions [41–45].
More detailed investigations of ecosystem health and
impact, adaptation and vulnerability studies (IAV) are
needed.
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Negrón-Juárez R I 2013 The impacts of tropical cyclones on
the net carbon balance of eastern US forests 1851–2000
Environ. Res. Lett. 8 045017

[23] Masek J G, Goward S N, Kennedy R E, Cohen W B, Moisen G
G, Schleeweis K and Huang C 2013 United states forest
disturbance trends observed using landsat time series
Ecosystems 16 1087–104

[24] Mearns L O, Gutowski W, Jones R, Leung R, McGinnis S,
Nunes A and Qian Y 2009 A regional climate change
assessment program for North America Eos. Trans. Am.
Geophys. Un. 90 311–1

[25] McDowell N G et al 2015 Global satellite monitoring of
climate-induced vegetation disturbances Trends Plant Sci. 20
114–23

[26] Kasischke E S, Amiro B D, Barger N N, French N H F, Goetz S
J, Grosse G, Harmon M E, Hicke J A, Liu S and Masek J G
2013 Impacts of disturbance on the terrestrial carbon budget
of North America J. Geophys. Res. Biogeosci. 118 303–16

[27] Flanagan S A, Hurtt G C, Fisk J P, Sahajpal R, Hansen M C,
Dolan K A, Sullivan J H and Zhao M 2016 Potential vegetation
and carbon redistribution in Northern North America from
climate change Climate 4 2

[28] Millar C I and Stephenson N L 2015 Temperate forest health
in an era of emerging megadisturbance Science 349 823–6

[29] Briggs J M, Knapp A K, Blair J M, LHeisler J, Hoch G A, Lett M
S and McCarron J K 2005 An ecosystem in transition: causes
and consequences of the conversion of mesic grassland to
shrubland BioScience 55 243–54

[30] Melillo J M, Callaghan T V, Woodward F I, Salati E and Sinha
S 1990 Effects on ecosystems Climate Change: The IPCC
Scientific Assessment pages 283–310

[31] Ghannoum O and Way D A 2011 On the role of ecological
adaptation and geographic distribution in the response of trees
to climate change Tree Physiol. 31 1273–6

[32] Nunes L, Gower S T, Peckham S D, Magalhães M, Lopes D
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