54 research outputs found
Social-ecological-resilience enablers among youth residing in the air polluted Highveld Priority Area of South Africa
Young people living in low-income settlements face numerous challenges ranging from violence to polluted environments. However, many of them find ways in which to overcome these challenges for their own growth and development. These ‘ways’ are known as resilience-enablers. We studied the resilience enablers of 240 adolescents living in the highly air polluted area in South Africa. Using the draw-and-write technique, this qualitative study entailed asking school-attending adolescents (n = 240; average age: 14.1) to make a drawing that illustrated what supported their resilience, before writing a short narrative to explain their drawing. Using a codebook-informed thematic analysis, we identified two dominant patterns in the data: most young people relied on themselves to cope well with their challenging environment; a minority also drew on social, institutional and environmental supports. Our findings are alarming because they imply that little is being done to co-facilitate the resilience of young people in polluted low-income settlements.The University of Leicester.http://www.tandfonline.com/loi/rady20hj2024Educational PsychologyGeography, Geoinformatics and MeteorologySDG-03:Good heatlh and well-beingSDG-11:Sustainable cities and communitie
Genome-wide association study of thyroid-stimulating hormone highlights new genes, pathways and associations with thyroid disease
Thyroid hormones play a critical role in regulation of multiple physiological functions and thyroid dysfunction is associated with substantial morbidity. Here, we use electronic health records to undertake a genome-wide association study of thyroid-stimulating hormone (TSH) levels, with a total sample size of 247,107. We identify 158 novel genetic associations, more than doubling the number of known associations with TSH, and implicate 112 putative causal genes, of which 76 are not previously implicated. A polygenic score for TSH is associated with TSH levels in African, South Asian, East Asian, Middle Eastern and admixed American ancestries, and associated with hypothyroidism and other thyroid disease in South Asians. In Europeans, the TSH polygenic score is associated with thyroid disease, including thyroid cancer and age-of-onset of hypothyroidism and hyperthyroidism. We develop pathway-specific genetic risk scores for TSH levels and use these in phenome-wide association studies to identify potential consequences of pathway perturbation. Together, these findings demonstrate the potential utility of genetic associations to inform future therapeutics and risk prediction for thyroid diseases
Genetic diversity fuels gene discovery for tobacco and alcohol use
Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury(1-4). These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries(5). Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.Peer reviewe
Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.
Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation
Author Correction: Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk
Correction to: Nature Geneticshttps://doi.org/10.1038/s41588-023-01314-0, published online 13 March 2023. In the version of the article initially published, the sample sizes in the main text and Supplementary Tables 1 and 2 were incorrect. In the abstract, the last paragraph of the Introduction, the first paragraph of the Results, the top box in Figure 1a and the Supplementary Information, the total sample size has been corrected from 580,869 to 588,452 participants and the size of the European cohort from 468,062 to 475,645. Some of the effect sizes in Supplementary Table 14 (columns W, Z, AC, AF) had the wrong sign. There was also an error in Supplementary Table 3 where the sample size instead of the variant count was shown for EXCEED. The errors do not affect the conclusions of the study. Additionally, two acknowledgments for use of INTERVAL pQTL and Lung eQTL consortium data were omitted from the Supplementary Information. These errors have been corrected in the Supplementary Information and HTML and PDF versions of the article
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to
genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility
and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component.
Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci
(eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene),
including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform
genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer
SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the
diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
Genome-wide Association Study of Long COVID
SummaryInfections can lead to persistent or long-term symptoms and diseases such as shingles after varicella zoster, cancers after human papillomavirus, or rheumatic fever after streptococcal infections1, 2. Similarly, infection by SARS-CoV-2 can result in Long COVID, a condition characterized by symptoms of fatigue and pulmonary and cognitive dysfunction3–5. The biological mechanisms that contribute to the development of Long COVID remain to be clarified. We leveraged the COVID-19 Host Genetics Initiative6, 7to perform a genome-wide association study for Long COVID including up to 6,450 Long COVID cases and 1,093,995 population controls from 24 studies across 16 countries. We identified the first genome-wide significant association for Long COVID at theFOXP4locus.FOXP4has been previously associated with COVID-19 severity6, lung function8, and cancers9, suggesting a broader role for lung function in the pathophysiology of Long COVID. While we identify COVID-19 severity as a causal risk factor for Long COVID, the impact of the genetic risk factor located in theFOXP4locus could not be solely explained by its association to severe COVID-19. Our findings further support the role of pulmonary dysfunction and COVID-19 severity in the development of Long COVID.</jats:p
Estimating the New Keynesian Phillips Curve for Italian Manufacturing Sectors
The purpose of this paper is to test the general validity of the NKPC previsions for the Italian manufacturing industries. In particular we are interested in estimating the extent to which the degree of nominal inertia and the fraction of backward-looking price-setters differ from industry to industry. We attempt to address this issue by testing three different model specifications: a pure forward-looking model versus a hybrid model where an income labour share marginal cost measure is considered, and a modified hybrid model specification where marginal costs are corrected to include intermediate inputs. Our results show that the backward-looking component is statistically significant and quantitatively large for all industries. Moreover, this estimate does not depend on the models specification. Conversely, the parameter measuring the extent of price rigidity is sensitive to the definition of firms cost. Interpreting the overall results, we conclude that price-setting behaviour is not totally homogeneous among Italian firms
Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk
Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies
- …