1,828 research outputs found

    The amount of keratinized mucosa may not influence peri-implant health in compliant patients: A retrospective 5-year analysis

    Full text link
    AIM (a) To investigate the influence of the keratinized mucosa (KM) on peri-implant health or disease and (b) to identify a threshold value for the width of KM for peri-implant health. MATERIALS AND METHODS The total dataset was subsampled, that is one implant was randomly chosen per patient. In 87 patients, data were extracted at baseline (prosthesis insertion) and 5 years including the width of mid-buccal KM, bleeding on probing, probing depth, plaque index and marginal bone level (MB). Spearman correlations with Holm adjustment for multiple testing were used for potential associations. RESULTS Depending on the definition of peri-implant diseases, the prevalence of peri-implantitis ranged from 9.2% (bleeding on probing threshold: <50% or ≥50%) to 24.1% (threshold: absence or the presence). The prevalence of peri-implant mucositis was similar, irrespective of the definition (54%-55.2%). The width of KM and parameters for peri-implant diseases demonstrated negligible (Spearman correlation coefficients: -0.2 < ρ < 0.2). No threshold value was detected for the width of mid-buccal KM in relation to peri-implant health. CONCLUSION The width of KM around dental implants correlated to a negligible extent with parameters for peri-implant diseases. No threshold value for the width of KM to maintain peri-implant health could be identified

    Robust Limits from Upcoming Neutrino Telescopes and Implications on Minimal Dark Matter Models

    Get PDF
    Experimental developments in neutrino telescopes are drastically improving their ability to constrain the annihilation cross-section of dark matter. In this paper, we employ an angular power spectrum analysis method to probe the galactic and extra-galactic dark matter signals with neutrino telescopes. We first derive projections for a next generation of neutrino telescope that is inspired by KM3NeT. We emphasise that such analysis is much less sensitive to the choice of dark matter density profile. Remarkably, the projected sensitivity is improved by more than an order of magnitude with respect to the existing limits obtained by assuming the Burkert dark matter density profile describing the galactic halo. Second, we analyse minimal extensions to the Standard Model that will be maximally probed by the next generation of neutrino telescopes. As benchmark scenarios, we consider Dirac dark matter in ss- and tt-channel models with vector and scalar mediators. We follow a global approach by examining all relevant complementary experimental constraints. We find that neutrino telescopes will be able to competitively probe significant portions of parameter space. Interestingly, the anomaly-free Lμ−LτL_{\mu}-L_{\tau} model can potentially be explored in regions where the relic abundance is achieved through freeze-out mechanism

    Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV

    Get PDF
    The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore